Skip to main content

Microscopic Selection of Solutions to Scalar Conservation Laws with Discontinuous Flux in the Context of Vehicular Traffic

  • Conference paper
  • First Online:
Semigroups of Operators – Theory and Applications (SOTA 2018)

Abstract

In the context of road traffic modeling we consider a scalar hyperbolic conservation law with the flux (fundamental diagram) which is discontinuous at \(x=0\), featuring variable velocity limitation. The flow maximization criterion for selection of a unique admissible weak solution is generally admitted in the literature, however justification for its use can be traced back to the irrelevant vanishing viscosity approximation. We seek to assess the use of this criterion on the basis of modeling proper to the traffic context. We start from a first order microscopic follow-the-leader (FTL) model deduced from basic interaction rules between cars. We run numerical simulations of FTL model with large number of agents on truncated Riemann data, and observe convergence to the flow-maximizing Riemann solver. As an obstacle towards rigorous convergence analysis, we point out the lack of order-preservation of the FTL semigroup.

MDR is member of GNAMPA. MDR acknowledges the support of the National Science Centre, Poland, Project “Mathematics of multi-scale approaches in life and social sciences” No. 2017/25/B/ST1/00051, by the INdAM-GNAMPA Project 2019 “Equazioni alle derivate parziali di tipo iperbolico o non locale ed applicazioni” and by University of Ferrara, FIR Project 2019 “Leggi di conservazione di tipo iperbolico: teoria ed applicazioni”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adimurthi, Mishra, S., Gowda, G.D.V.: Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2(4), 783–837 (2005)

    Google Scholar 

  2. Amadori, D.: Initial-boundary value problems for nonlinear systems of conservation laws. NoDEA Nonlinear Differ. Equ. Appl. 4(1), 1–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreianov, B.: The semigroup approach to conservation laws with discontinuous flux. In: Hyperbolic Conservation Laws and Related Analysis with Applications, Springer Proceedings in Mathematics and Statistics, vol. 49, pp. 1–22. Springer, Heidelberg (2014)

    Google Scholar 

  4. Andreianov, B.: New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux. In: CANUM 2014–42e Congrès National d’Analyse Numérique, ESAIM Proceedings Surveys, vol. 50, pp. 40–65. EDP Sci, Les Ulis (2015)

    Google Scholar 

  5. Andreianov, B., Cancès, C.: Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks’ medium. Comput. Geosci. 17(3), 551–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andreianov, B., Cancès, C.: On interface transmission conditions for conservation laws with discontinuous flux of general shape. J. Hyperbolic Differ. Equ. 12(2), 343–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andreianov, B., Donadello, C., Razafison, U., Rosini, M.D.: Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks. ESAIM Math. Model. Numer. Anal. 50(5), 1269–1287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Andreianov, B., Donadello, C., Razafison, U., Rosini, M.D.: Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux. J. Math. Pures Appl. 9(116), 309–346 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Andreianov, B., Donadello, C., Rosini, M.D.: Crowd dynamics and conservation laws with nonlocal constraints and capacity drop. Math. Models Methods Appl. Sci. 24(13), 2685–2722 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Andreianov, B., Karlsen, K.H., Risebro, N.H.: A theory of \(L^1\)-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201(1), 27–86 (2011)

    Google Scholar 

  11. Andreianov, B., Mitrović, D.: Entropy conditions for scalar conservation laws with discontinuous flux revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(6), 1307–1335 (2015)

    Google Scholar 

  12. Andreianov, B., Sbihi, K.: Well-posedness of general boundary-value problems for scalar conservation laws. Trans. Am. Math. Soc. 367(6), 3763–3806 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bardos, C., le Roux, A.Y., Nédélec, J.C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benyahia, M., Rosini, M.D.: A macroscopic traffic model with phase transitions and local point constraints on the flow. Netw. Heterog. Media 12(2), 297–317 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Braess, D.: Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung 12(1), 258–268 (1968)

    MathSciNet  MATH  Google Scholar 

  16. Bürger, R., Karlsen, K., Risebro, N., Towers, J.: Monotone difference approximations for the simulation of clarifier-thickener units. Comput. Vis. Sci. 6(2), 83–91 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bürger, R., Karlsen, K.H., Towers, J.D.: An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47(3), 1684–1712 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bürger, R., Karlsen, K.H., Towers, J.D.: On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Netw. Heterog. Media 5(3), 461–485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cancès, C.: Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. I. Convergence to the optimal entropy solution. SIAM J. Math. Anal. 42(2), 946–971 (2010)

    Google Scholar 

  20. Colombo, R.M., Garavello, M.: Phase transition model for traffic at a junction. J. Math. Sci. (N.Y.) 196(1), 30–36 (2014)

    Google Scholar 

  21. Colombo, R.M., Goatin, P.: A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234(2), 654–675 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Colombo, R.M., Rosini, M.D.: Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28(13), 1553–1567 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Colombo, R.M., Rosini, M.D.: Well posedness of balance laws with boundary. J. Math. Anal. Appl. 311(2), 683–702 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Corli, A., Rosini, M.D.: Coherence and chattering of a one-way valve. ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik (2019)

    Google Scholar 

  25. Dal Santo, E., Donadello, C., Pellegrino, S.F., Rosini, M.D.: Representation of capacity drop at a road merge via point constraints in a first order traffic model. ESAIM Math. Model. Numer. Anal. 53(1), 1–34 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Delle Monache, M.L., Goatin, P., Piccoli, B.: Priority-based Riemann solver for traffic flow on networks. Commun. Math. Sci. 16(1), 185–211 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Di Francesco, M., Fagioli, S., Rosini, M.D.: Deterministic particle approximation of scalar conservation laws. Boll. Unione Mat. Ital. 10(3), 487–501 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Di Francesco, M., Fagioli, S., Rosini, M.D., Russo, G.: Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows. In: Active Particles. vol. 1. Advances in Theory, Models, and Applications, pp. 333–378. Model. Simul. Sci. Eng. Technol. Birkhäuser/Springer, Cham (2017)

    Google Scholar 

  29. Di Francesco, M., Rosini, M.: Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit. Arch. Rat. Mech. Anal. 217(3), 831–871 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Di Francesco, M., Fagioli, S., Rosini, M.D.: Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. Math. Biosci. Eng. 14(1), 127–141 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Di Francesco, M., Fagioli, S., Rosini, M.D., Russo, G.: Deterministic particle approximation of the Hughes model in one space dimension. Kinet. Relat. Models 10(1), 215–237 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Diehl, S.: Continuous sedimentation of multi-component particles. Math. Methods Appl. Sci. 20(15), 1345–1364 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Diehl, S.: A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 6(1), 127–159 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Garavello, M., Goatin, P.: The Aw-Rascle traffic model with locally constrained flow. J. Math. Anal. Appl. 378(2), 634–648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Garavello, M., Natalini, R., Piccoli, B., Terracina, A.: Conservation laws with discontinuous flux. Netw. Heterog. Media 2(1), 159–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gimse, T., Risebro, N.H.: Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23(3), 635–648 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hopf, E.: The partial differential equation \(u_t+uu_x=\mu u_{xx}\). Commun. Pure Appl. Math. 3, 201–230 (1950)

    Google Scholar 

  38. Kaasschieter, E.F.: Solving the Buckley-Leverett equation with gravity in a heterogeneous porous medium. Comput. Geosci. 3(1), 23–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Karlsen, K.H., Risebro, N.H., Towers, J.D.: \(L^1\) stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3, 1–49 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Kolb, O., Costeseque, G., Goatin, P., Göttlich, S.: Pareto-optimal coupling conditions for the Aw-Rascle-Zhang traffic flow model at junctions. SIAM J. Appl. Math. 78(4), 1981–2002 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kruzhkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (123), 228–255 (1970)

    Google Scholar 

  42. Lax, P.: Shock Waves and Entropy, pp. 603–634 (1971)

    Google Scholar 

  43. LeFloch, P.G.: Hyperbolic Systems of Conservation Laws. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2002)

    Google Scholar 

  44. Lighthill, M., Whitham, G.: On kinematic waves. II. A theory of traffic flow on long crowded roads. In: Royal Society of London. Series A, Mathematical and Physical Sciences. vol. 229, pp. 317–345 (1955)

    Google Scholar 

  45. Moutari, S., Herty, M., Klein, A., Oeser, M., Steinauer, B., Schleper, V.: Modelling road traffic accidents using macroscopic second-order models of traffic flow. IMA J. Appl. Math. 78(5), 1087–1108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Oleĭnik, O.A.: Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Uspehi Mat. Nauk 14(2(86)), 165–170 (1959)

    Google Scholar 

  47. Rayleigh, L.: Aerial plane waves of finite amplitude [Proc. Roy. Soc. London Ser. A 84 (1910), 247–284]. In: Classic papers in shock compression science, pp. 361–404. High-press. Shock Compression Condens. Matter, Springer, New York (1998)

    Google Scholar 

  48. Richards, P.I.: Shock waves on the highway. Oper. Res. 4(1), 42–51 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ross, D.S.: Two new moving boundary problems for scalar conservation laws. Commun. Pure Appl. Math. 41(5), 725–737 (1988)

    Article  MathSciNet  Google Scholar 

  50. Seguin, N., Vovelle, J.: Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13(2), 221–257 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shen, W.: Traveling wave profiles for a follow-the-leader model for traffic flow with rough road condition. Netw. Heterog. Media 13(3), 449–478 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Srivastava, A., Geroliminis, N.: Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model. Transp. Res. Part C: Emerg. Technol. 30, 161–177 (2013)

    Article  Google Scholar 

  53. Towers, J.D.: Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38(2), 681–698 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. Villa, S., Goatin, P., Chalons, C.: Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model. Discrete Contin. Dyn. Syst. Ser. B 22(10), 3921–3952 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Vol\(^{\prime }\)pert, A.I.: Spaces \({\text{BV}}\) and quasilinear equations. Mat. Sb. (N.S.) 73 (115), 255–302 (1967)

    Google Scholar 

Download references

Acknowledgements

The publication has been prepared with the support of the RUDN University Program 5-100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano D. Rosini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andreianov, B., Rosini, M.D. (2020). Microscopic Selection of Solutions to Scalar Conservation Laws with Discontinuous Flux in the Context of Vehicular Traffic. In: Banasiak, J., Bobrowski, A., Lachowicz, M., Tomilov, Y. (eds) Semigroups of Operators – Theory and Applications. SOTA 2018. Springer Proceedings in Mathematics & Statistics, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-46079-2_7

Download citation

Publish with us

Policies and ethics