Skip to main content

Abstract

This chapter deals with the processing technique denominated sandwich technique for the synthesis of light alloy composites. The technique is described in detail for manufacturing magnesium and aluminum alloys reinforced with multiwalled carbon nanotubes. The microstructure of the products obtained at each step of the technique is discussed. The microstructural and mechanical characterization of the final products is presented and discussed. The sandwich technique consists of stacking a polymer previously reinforced with carbon nanotubes, which is used as a vehicle to bring the reinforcement to the metal matrix. The manufacturing process is carried out by a hot compacted system with atmosphere and pressure control. The sandwich technique is a diffusive process where the polymer is thermally degraded, to finally clamp the reinforcement between metallic sheets. This chapter shows the feasibility of the manufacturing process for future applications in different sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salas, W., Alba-Baena, N., & Murr, L. (2007). Explosive shock-wave consolidation of aluminum powder/carbon nanotube aggregate mixtures: Optical and electron metallography. Metallurgical and Materials Transactions A, 38(12), 2928–2935.

    Article  Google Scholar 

  2. Eizadjou, M., et al. (2008). Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Composites Science and Technology, 68(9), 2003–2009.

    Article  CAS  Google Scholar 

  3. Garcia, E. J., Wardle, B. L., & Hart, A. J. (2008). Joining prepreg composite interfaces with aligned carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39(6), 1065–1070.

    Article  Google Scholar 

  4. Yu, S., Tong, M. N., & Critchlow, G. (2010). Use of carbon nanotubes reinforced epoxy as adhesives to join aluminum plates. Materials & Design, 31, S126–S129.

    Article  CAS  Google Scholar 

  5. Avedesian, M. M., & Baker H. (1999). ASM specialty handbook: magnesium and magnesium alloys. ASM international.

    Google Scholar 

  6. Campbell Jr, F. C. (2011). Manufacturing technology for aerospace structural materials. Elsevier.

    Google Scholar 

  7. Chen, Z., et al. (2018). Multilayered carbon nanotube yarn based optoacoustic transducer with high energy conversion efficiency for ultrasound application. Nano Energy, 46, 314–321.

    Article  CAS  Google Scholar 

  8. Isaza, M. C. A., et al. (2018). Dispersion and alignment quantification of carbon nanotubes in a polyvinyl alcohol matrix. Journal of Composite Materials, 52(12), 1617–1626.

    Article  Google Scholar 

  9. Noor, N., et al. (2018). Review on carbon nanotube based polymer composites and its applications. Journal of Advanced Manufacturing Technology (JAMT), 12(1), 311–326.

    Google Scholar 

  10. Vázquez-Moreno, J. M., et al. (2019). Preparation and mechanical properties of graphene/carbon fiber-reinforced hierarchical polymer composites. Journal of Composites Science, 3(1), 30.

    Article  Google Scholar 

  11. Enqvist, E., et al. (2016). The effect of ball milling time and rotational speed on ultra high molecular weight polyethylene reinforced with multiwalled carbon nanotubes. Polymer Composites, 37(4), 1128–1136.

    Article  CAS  Google Scholar 

  12. Guo, J., et al. (2018). A new finding for carbon nanotubes in polymer blends: Reduction of nanotube breakage during melt mixing. Journal of Thermoplastic Composite Materials, 31(1), 110–118.

    Article  CAS  Google Scholar 

  13. Verma, P., et al. (2015). Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon, 89, 308–317.

    Article  CAS  Google Scholar 

  14. Feng, W., et al. (2003). Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon, 41(8), 1551–1557.

    Article  CAS  Google Scholar 

  15. Gao, J., He, Y., & Gong, X. (2018). Effect of electric field induced alignment and dispersion of functionalized carbon nanotubes on properties of natural rubber. Results in Physics, 9, 493–499.

    Article  Google Scholar 

  16. Shi, Y.-D., et al. (2018). Low magnetic field-induced alignment of nickel particles in segregated poly (l-lactide)/poly (ε-caprolactone)/multi-walled carbon nanotube nanocomposites: Towards remarkable and tunable conductive anisotropy. Chemical Engineering Journal, 347, 472–482.

    Article  CAS  Google Scholar 

  17. Huang, Z.-M., et al. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253.

    Article  CAS  Google Scholar 

  18. Lu, K., et al. (1996). Mechanical damage of carbon nanotubes by ultrasound. Carbon, 34(6), 814–816.

    Article  CAS  Google Scholar 

  19. Mukhopadhyay, K., Dwivedi, C. D., & Mathur, G. N. (2002). Conversion of carbon nanotubes to carbon nanofibers by sonication. Carbon, 8(40), 1373–1376.

    Article  Google Scholar 

  20. Medina Escobar, S. A., Isaza Merino, C. A., & Meza Meza, J. M. (2015). Mechanical and thermal behavior of polyvinyl alcohol reinforced with aligned carbon nanotubes. Matéria (Rio de Janeiro), 20(3), 794–802.

    Article  Google Scholar 

  21. Rusnaldy, R. (2001). Diffusion bonding: An advanced of material process. Rotasi, 3(1), 23–27.

    Google Scholar 

  22. Velmurugan, C., et al. (2016). Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel. Journal of Materials Processing Technology, 234, 272–279.

    Article  CAS  Google Scholar 

  23. Ghosh, M., & Chatterjee, S. (2002). Characterization of transition joints of commercially pure titanium to 304 stainless steel. Materials Characterization, 48(5), 393–399.

    Article  CAS  Google Scholar 

  24. Mahendran, G., Balasubramanian, V., & Senthilvelan, T. (2009). Developing diffusion bonding windows for joining AZ31B magnesium and copper alloys. The International Journal of Advanced Manufacturing Technology, 42(7–8), 689–695.

    Article  Google Scholar 

  25. Kitazono, K., Shimoda, Y., & Kato, S. (2013). Enhanced plastic deformation of magnesium alloy produced through accumulative diffusion bonding. Materials Science Forum, 735, 87–92.

    Article  Google Scholar 

  26. Afghahi, S. S. S., et al. (2016). Diffusion bonding of Al 7075 and Mg AZ31 alloys: Process parameters, microstructural analysis and mechanical properties. Transactions of Nonferrous Metals Society of China, 26(7), 1843–1851.

    Article  Google Scholar 

  27. Zhang, X., Quan, G., & Wei, W. (1999). Preliminary investigation on joining performance of SiCp-reinforced aluminium metal matrix composite (Al/SiCp–MMC) by vacuum brazing. Composites Part A: Applied Science and Manufacturing, 30(6), 823–827.

    Article  Google Scholar 

  28. Muratoğlu, M., Yilmaz, O., & Aksoy, M. (2006). Investigation on diffusion bonding characteristics of aluminum metal matrix composites (Al/SiCp) with pure aluminum for different heat treatments. Journal of Materials Processing Technology, 178(1–3), 211–217.

    Article  Google Scholar 

  29. Luo, Z., & Koo, J. H. (2007). Quantifying the dispersion of mixture microstructures. Journal of Microscopy, 225(2), 118–125.

    Article  CAS  Google Scholar 

  30. Gwyddion: Free SPM data analysis software. (2019). Scanning Probe Image Processor. Available from: http://gwyddion.net/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herrera Ramirez, J.M., Perez Bustamante, R., Isaza Merino, C.A., Arizmendi Morquecho, A.M. (2020). Sandwich Technique. In: Unconventional Techniques for the Production of Light Alloys and Composites. Springer, Cham. https://doi.org/10.1007/978-3-030-48122-3_4

Download citation

Publish with us

Policies and ethics