Skip to main content

On the Parameterized Complexity of the Expected Coverage Problem

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2020)

Abstract

The Maximum covering location problem (MCLP) is a well-studied problem in the field of operations research. Given a network with demands (demands can be positive or negative) on the nodes, an integer budget k, the MCLP seeks to find k potential facility centers in the network such that the neighborhood coverage is maximized. We study the variant of MCLP where edges of the network are subject to random failures due to some disruptive events. One of the popular models capturing the unreliable nature of the facility location is the linear reliable ordering (LRO) model. In this model, with every edge e of the network, we associate its survival probability \(0\le p_e\le 1\), or equivalently, its failure probability \(1-p_e\). The failure correlation in LRO is the following: If an edge e fails then every edge \(e'\) with \(p_{e'} \le p_e\) surely fails. The task is to identify the positions of k facilities that maximize the expected coverage. We refer to this problem as Expected Coverage problem. We study the Expected Coverage problem from the parameterized complexity perspective and obtain the following results.

  1. 1.

    For the parameter treewidth, we show that the Expected Coverage problem is W[1]-hard. We find this result a bit surprising, because the variant of the problem with non-negative demands is fixed-parameter tractable (FPT) parameterized by the treewidth of a graph.

  2. 2.

    We complement the lower bound by the proof that Expected Coverage is FPT being parameterized by the treewidth and the maximum vertex degree. We give an algorithm that solves the problem in time \( 2^{\mathcal {O}({\text {tw}}\log \varDelta )} n^{\mathcal {O}(1)}\), where \( {\text {tw}}\) is the treewidth, \( \varDelta \) is the maximum vertex degree, and n the number of vertices of the input graph. In particular, since \(\varDelta \le n\), it means the problem is solvable in time \( n^{\mathcal {O}({\text {tw}})} \), that is, is in XP parameterized by treewidth.

This work was done while the second author was visiting University of Bergen, Bergen, Norway supported by the Norwegian Research Council (NFR) MULTIVAL project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Narayanaswamy et al. [33] called this problem Max-Exp-Cover-1-LRO.

References

  1. Ageev, A.A.: A criterion of polynomial-time solvability for the network location problem. In: Proceedings of the 2nd Integer Programming and Combinatorial Optimization Conference, Pittsburgh, PA, USA, May 1992, pp. 237–245 (1992)

    Google Scholar 

  2. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential speed-up for planar graph problems. J. Algorithms 52(1), 26–56 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Berman, O., Drezner, Z., Krass, D.: Generalized coverage: new developments in covering location models. Comput. Oper. Res 37(10), 1675–1687 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Berman, O., Drezner, Z., Wesolowsky, G.O.: The maximal covering problem with some negative weights. Geograph. Anal. 41(1), 30–42 (2009)

    Google Scholar 

  6. van Bevern, R., Tsidulko, O.Y., Zschoche, P.: Fixed-parameter algorithms for maximum-profit facility location under matroid constraints. In: Heggernes, P. (ed.) CIAC 2019. LNCS, vol. 11485, pp. 62–74. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17402-6_6

    MATH  Google Scholar 

  7. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location and k-median problems. In: 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, New York, NY, USA, 17–18 October 1999, pp. 378–388 (1999)

    Google Scholar 

  8. Church, R., Velle, C.R.: The maximal covering location problem. Pap. Reg. Sci. 32(1), 101–118 (1974)

    Google Scholar 

  9. Colbourn, C.J., Xue, G.: A linear time algorithm for computing the most reliable source on a series-parallel graph with unreliable edges. Theor. Comput. Sci. 209(1), 331–345 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    MATH  Google Scholar 

  11. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and \(H\)-minor-free graphs. J. ACM 52(6), 866–893 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

    MATH  Google Scholar 

  13. Ding, W.: Computing the most reliable source on stochastic ring networks. In: 2009 WRI World Congress on Software Engineering, vol. 1, pp. 345–347, May 2009

    Google Scholar 

  14. Ding, W.: Extended most reliable source on an unreliable general network. In: 2011 International Conference on Internet Computing and Information Services, pp. 529–533, September 2011

    Google Scholar 

  15. Ding, W., Xue, G.: A linear time algorithm for computing a most reliable source on a tree network with faulty nodes. Theor. Comput. Sci. 412(3), 225–232 (2011). Combinatorial Optimization and Applications

    MathSciNet  MATH  Google Scholar 

  16. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In: Complexity Theory: Current Research, Dagstuhl Workshop, 2–8 February 1992, pp. 191–225 (1992)

    Google Scholar 

  17. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    MATH  Google Scholar 

  18. Drange, P.G., et al.: Kernelization and sparseness: the case of dominating set. In: Proceedings of the 33rd International Symposium on Theoretical Aspects of Computer Science (STACS). LIPIcs, vol. 47, pp. 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  19. Eiselt, H.A., Gendreau, M., Laporte, G.: Location of facilities on a network subject to a single-edge failure. Networks 22(3), 231–246 (1992)

    MathSciNet  MATH  Google Scholar 

  20. Feldmann, A.E., Marx, D.: The parameterized hardness of the k-center problem in transportation networks. In: 16th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2018, Malmö, Sweden, 18–20 June 2018, vol. 101, pp. 19:1–19:13 (2018)

    Google Scholar 

  21. Fellows, M.R., Fernau, H.: Facility location problems: a parameterized view. Discrete Appl. Math. 159(11), 1118–1130 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial cover problems. Inf. Process. Lett. 111(16), 814–818 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 503–510. SIAM (2010)

    Google Scholar 

  24. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Kernels for (connected) dominating set on graphs with excluded topological minors. ACM Trans. Algorithms 14(1), 6:1–6:31 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable graphs. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 331–340. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_30

    Google Scholar 

  26. Hassin, R., Ravi, R., Salman, F.S.: Tractable cases of facility location on a network with a linear reliability order of links. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 275–276. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0_24

    Google Scholar 

  27. Hassin, R., Ravi, R., Salman, F.S.: Multiple facility location on a network with linear reliability order of edges. J. Comb. Optim. 34, 931–955 (2017). https://doi.org/10.1007/s10878-017-0121-5

    MathSciNet  MATH  Google Scholar 

  28. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS Publishing Co., Boston (1997)

    MATH  Google Scholar 

  29. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

  31. Kneis, J., Mölle, D., Rossmanith, P.: Partial vs. complete domination: t-dominating set. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 367–376. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69507-3_31

    Google Scholar 

  32. Melachrinoudis, E., Helander, M.E.: A single facility location problem on a tree with unreliable edges. Networks 27(4), 219–237 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Narayanaswamy, N.S., Nasre, M., Vijayaragunathan, R.: Facility location on planar graphs with unreliable links. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol. 10846, pp. 269–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90530-3_23

    Google Scholar 

  34. Philip, G., Raman, V., Sikdar, S.: Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms 9(1), 11 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayaragunathan Ramamoorthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fomin, F.V., Ramamoorthi, V. (2020). On the Parameterized Complexity of the Expected Coverage Problem. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham. https://doi.org/10.1007/978-3-030-50026-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50026-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50025-2

  • Online ISBN: 978-3-030-50026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics