Skip to main content

Weighted Rooted Trees: Fat or Tall?

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12159))

Included in the following conference series:

Abstract

Let V be a countable set, let T be a rooted tree on the vertex set V, and let \({\mathcal M}=(V,2^V, \mu )\) be a finite signed measure space. How can we describe the “shape” of the weighted rooted tree \((T, {\mathcal M})\)? Is there a natural criterion for calling it “fat” or “tall”? We provide a series of such criteria and show that every “heavy” weighted rooted tree is either fat or tall, as we wish. This leads us to seek hypergraphs such that regardless of how we assign a finite signed measure on their vertex sets, the resulting weighted hypergraphs have either a “heavy” large matching or a “heavy” vertex subset that induces a subhypergraph with small matching number. Here we also must develop an appropriate definition of what it means for a set to be heavy in a signed measure space.

Supported by NSFC (11671258, 11971305) and STCSM (17690740800).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, an Alexandroff space is the set of down-sets of a preorder.

References

  1. Björner, A., Ziegler, G.M.: Introduction to greedoids. In: Matroid Applications, Encyclopedia of Mathematics and its Applications, vol. 40, pp. 284–357. Cambridge University Press, Cambridge (1992). https://doi.org/10.1017/CBO9780511662041.009

  2. Bonamy, M., Bousquet, N., Thomassé, S.: The Erdös-Hajnal conjecture for long holes and antiholes. SIAM J. Discrete Math. 30(2), 1159–1164 (2016). https://doi.org/10.1137/140981745

    Article  MathSciNet  MATH  Google Scholar 

  3. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51(1), 161–166 (1950). https://doi.org/10.2307/1969503

    Article  MathSciNet  MATH  Google Scholar 

  4. Eaton, L., Tedford, S.J.: A branching greedoid for multiply-rooted graphs and digraphs. Discrete Math. 310(17), 2380–2388 (2010). https://doi.org/10.1016/j.disc.2010.05.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdős, P., Hajnal, A.: Ramsey-type theorems. Discrete Appl. Math. 25(1–2), 37–52 (1989). https://doi.org/10.1016/0166-218X(89)90045-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935). http://eudml.org/doc/88611

    MathSciNet  MATH  Google Scholar 

  7. Felsner, S.: Orthogonal structures in directed graphs. J. Combin. Theory Ser. B 57(2), 309–321 (1993). https://doi.org/10.1006/jctb.1993.1023

    Article  MathSciNet  MATH  Google Scholar 

  8. Gallai, T.: On directed paths and circuits. In: Theory of Graphs (Proc. Colloq., Tihany, 1966), pp. 115–118. Academic Press, New York (1968)

    Google Scholar 

  9. Gallai, T., Milgram, A.N.: Verallgemeinerung eines graphentheoretischen Satzes von Rédei. Acta Sci. Math. (Szeged) 21, 181–186 (1960)

    MathSciNet  MATH  Google Scholar 

  10. Hujdurović, A., Husić, E., Milanič, M., Rizzi, R., Tomescu, A.I.: Perfect phylogenies via branchings in acyclic digraphs and a generalization of Dilworth’s theorem. ACM Trans. Algorithms 14(2), Art. 20, 26 (2018). https://doi.org/10.1145/3182178

  11. Mirsky, L.: A dual of Dilworth’s decomposition theorem. Amer. Math. Mon. 78, 876–877 (1971). https://doi.org/10.2307/2316481

    Article  MathSciNet  MATH  Google Scholar 

  12. Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Rev. Française Informat. Recherche Opérationnelle 1(5), 129–132 (1967)

    Google Scholar 

  13. Schmidt, W.: A characterization of undirected branching greedoids. J. Combin. Theory Ser. B 45(2), 160–184 (1988). https://doi.org/10.1016/0095-8956(88)90067-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Song, Z.X., Ward, T., York, A.: A note on weighted rooted trees. Discrete Math. 338(12), 2492–2494 (2015). https://doi.org/10.1016/j.disc.2015.06.014

    Article  MathSciNet  MATH  Google Scholar 

  15. Stein, E.M., Shakarchi, R.: Fourier Analysis: An Introduction, Princeton Lectures in Analysis, vol. 1. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinfeng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Zhu, Y. (2020). Weighted Rooted Trees: Fat or Tall?. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham. https://doi.org/10.1007/978-3-030-50026-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50026-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50025-2

  • Online ISBN: 978-3-030-50026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics