Skip to main content

Few Shot Learning for Medical Imaging

  • Chapter
  • First Online:
Machine Learning Algorithms for Industrial Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 907))

Abstract

While deep learning systems have provided breakthroughs in several tasks in the medical domain, they are still limited by the problem of dependency on the availability of training data. To counter this limitation, there is active research ongoing in few shot learning. Few shot learning algorithms aim to overcome the data dependency by exploiting the information available from a very small amount of data. In medical imaging, due to the rare occurrence of some diseases, there is often a limitation on the available data, as a result, to which the success of few shot learning algorithms can prove to be a significant advancement. In this chapter, the background and working of few shot learning algorithms are explained. The problem statement for few shot classification and segmentation is described. There is then a detailed study of the problems faced in medical imaging related to the availability of limited data. After establishing context, the recent advances in the application of few shot learning to medical imaging tasks such as classification and segmentation are explored. The results of these applications are examined with a discussion on its future scope.

J. Kotia and A. Kotwal—Both authors have contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for medical image processing: overview, challenges and the future. In N. Dey, A. Ashour, & S. Borra (Eds.), Classification in BioApps (Vol. 26)., Lecture Notes in Computational Vision and Biomechanics Cham: Springer.

    Chapter  Google Scholar 

  2. He, K., Zhang, X., Ren, S., Sun, J. (2015). Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV 2015) (pp. 1026–1034). IEEE Computer Society. https://doi.org/10.1109/ICCV.2015.123

  3. Lee, J. G., et al. (2017). Deep learning in medical imaging: general overview. Korean Journal of Radiology, 18(4), 570–584. https://doi.org/10.3348/kjr.2017.18.4.570.

    Article  Google Scholar 

  4. Litjens, G., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005. (ISSN 1361-8415).

    Article  Google Scholar 

  5. Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19(1), 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442.

    Article  Google Scholar 

  6. Miller, E. G., Matsakis, N. E., Viola, P. A. (2000). Learning from one example through shared densities on transforms. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000) (Cat. No.PR00662), Hilton Head Island, SC (Vol. 1, pp. 464–471). https://doi.org/10.1109/CVPR.2000.855856

  7. Li, F.-F., Fergus, & Perona (2003). A Bayesian approach to unsupervised one-shot learning of object categories. In: Proceedings Ninth IEEE International Conference on Computer Vision, Nice, France (Vol. 2, pp. 1134–1141). https://doi.org/10.1109/ICCV.2003.1238476

  8. Li, F.-F., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 594–611. https://doi.org/10.1109/TPAMI.2006.79.

    Article  Google Scholar 

  9. Brenden, L., Ruslan, S., Jason, G., Joshua, T. (2011). One shot learning of simple visual concepts.

    Google Scholar 

  10. Koch, G. R. (2015). Siamese Neural Networks for One-Shot Image Recognition.

    Google Scholar 

  11. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T. (2016). One-shot learning with memory-augmented neural networks. In Proceedings of the 33nd International Conference on Machine Learning.

    Google Scholar 

  12. Ravi, S., & Larochelle, H. (2017). Optimization as a model for few-shot learning. In ICLR (2017).

    Google Scholar 

  13. Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (ICML 2017) (pp. 1126–1135). JMLR.org.

    Google Scholar 

  14. Snell, J., Swersky, K., Zemel, R. (2017). Prototypical Networks for Few-shot Learning.

    Google Scholar 

  15. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P., Hospedales, T. (2018). Learning to compare: relation network for few-shot learning (pp. 1199–1208). https://doi.org/10.1109/CVPR.2018.00131.

  16. Kaiser, Ł., Nachum, O., Roy, A., & Bengio, S. (2017). Learning to Remember Rare Events.

    Google Scholar 

  17. Shaban, A., Bansal, S., Liu, Z., Essa, I., & Boots, B. (2017, September). One-shot learning for semantic segmentation. In T.K. Kim, S. Zafeiriou, G. Brostow & K. Mikolajczyk (Eds.), Proceedings of the British Machine Vision Conference (BMVC) (pp. 167.1–167.13). BMVA Press

    Google Scholar 

  18. Rakelly, K., Shelhamer, E., Darrell, T., Efros, A. A., & Levine, S. (2018). Conditional networks for few-shot semantic segmentation. In ICLR.

    Google Scholar 

  19. Rakelly, K., Shelhamer, E., Darrell, T., Efros, A., & Levine, S. (2018). Few-Shot Segmentation Propagation with Guided Networks.

    Google Scholar 

  20. Kim, J., Oh, T., Lee, S., Pan, F., & Kweon, I. (2019). Variational prototyping-encoder: one-shot learning with prototypical images. In CVPR.

    Google Scholar 

  21. Lee, K., Maji, S., Ravichandran, A., & Soatto, S. (2019). Meta-learning with differentiable convex optimization. In: CVPR.

    Google Scholar 

  22. Kim, J., Kim, T., Kim, S., & Yoo, C. D. (2019). Edge-labeling graph neural network for few-shot learning. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 11–20), Long Beach, CA, USA. https://doi.org/10.1109/CVPR.2019.00010

  23. Jamal, M. A., Qi, G., & Shah, M. (2018). Task-agnostic meta-learning for few-shot learning. In: CVPR.

    Google Scholar 

  24. Sun, Q., Liu, Y., Chua, T., & Schiele, B. (2018). Meta-transfer learning for few-shot learning. In: CVPR.

    Google Scholar 

  25. Li, H., Eigen, D., Dodge, S.F., Zeiler, M.D., & Wang, X. (2019). Finding task-relevant features for few-shot learning by category traversal. In: CVPR.

    Google Scholar 

  26. Zhang, C., Lin, G., Liu, F., Yao, R., & Shen, C. (2019). CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning.

    Google Scholar 

  27. Zhang, H., Zhang, J., & Koniusz, P. (2019). Few-Shot Learning via Saliency-Guided Hallucination of Samples (pp. 2765–2774). https://doi.org/10.1109/CVPR.2019.00288.

  28. Chen, Z., Fu, Y., Wang, Y., Ma, L., Liu, W., & Hebert, M. (2019). Image deformation meta-networks for one-shot learning. In: CVPR.

    Google Scholar 

  29. Schwartz, E., Karlinsky, L., Feris, R., Giryes, R., & Bronstein, A. (2019). Baby steps towards few-shot learning with multiple semantics.

    Google Scholar 

  30. Wang, X., Yu, F., Wang, R., Darrell, T., & Gonzalez, J. (2019). TAFE-Net: task-aware feature embeddings for low shot learning. In CVPR.

    Google Scholar 

  31. Puch, S., Sánchez, I., & Rowe, M. (2019). Few-shot learning with deep triplet networks for brain imaging modality recognition. In DART/MIL3ID@MICCAI.

    Google Scholar 

  32. Kim, M., Zuallaert, J., De Neve, W. (2017). Few-shot learning using a small-sized dataset of high-resolution FUNDUS images for glaucoma diagnosis. In Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care (MMHealth 2017) (pp. 89–92). New York: Association for Computing Machinery. https://doi.org/10.1145/3132635.3132650

  33. Hu, S., Tomczak, J. (2018) Max Welling: Meta-Learning for Medical Image Classification.

    Google Scholar 

  34. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: convolutional networks for biomedical image segmentation. In: N. Navab, J. Hornegger, W. Wells, A. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015). Lecture Notes in Computer Science (vol. 9351). Cham: Springer.

    Google Scholar 

  35. Lahiani, A., Gildenblat, J., Klaman, I., Navab, N., & Klaiman, E. (2018). Generalizing multistain immunohistochemistry tissue segmentation using one-shot color deconvolution deep neural networks.

    Google Scholar 

  36. Guha Roy, A., Siddiqui, S., Pölsterl, S., Navab, N. & Wachinger, C. (2019). ‘Squeeze & Excite’ Guided Few-Shot Segmentation of Volumetric Images.

    Google Scholar 

  37. Goodfellow, I. J., et al. (2014). Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 (NIPS 2014) (pp. 2672–2680). Cambridge: MIT Press.

    Google Scholar 

  38. Mondal, A., Dolz, J., & Desrosiers, C. (2018). Few-shot 3D Multi-modal Medical Image Segmentation Using Generative Adversarial Learning.

    Google Scholar 

  39. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J., & Dalca, A. (2019). Data augmentation using learned transforms for one-shot medical image segmentation.

    Google Scholar 

  40. Wang, Y., Yao, Q., Kwok, J. T., & Ni, L. M. (2019). Generalizing from a Few Examples: A Survey on Few-Shot Learning.

    Google Scholar 

  41. Thrun, S. (1998). Lifelong learning algorithms. In S. Thrun & L. Pratt (Eds.), Learning to Learn. Boston: Springer.

    Chapter  Google Scholar 

  42. Ren, M., et al. (2018). Meta-Learning for Semi-Supervised Few-Shot Classification.

    Google Scholar 

  43. Vilalta, R., & Drissi, Y. (2002). A perspective view and survey of meta-learning. Artificial Intelligence Review, 18, 77–95. https://doi.org/10.1023/A:1019956318069.

    Article  Google Scholar 

  44. Vilalta, R., Giraud-Carrier, C., Brazdil, P. (2010). Meta-Learning - Concepts and Techniques.

    Google Scholar 

  45. Kruspe, A. (2019). One-Way Prototypical Networks. https://doi.org/10.13140/RG.2.2.31516.95367.

  46. Chung, Y.-A., & Weng, W.-H. (2017). Learning Deep Representations of Medical Images using Siamese CNNs with Application to Content-Based Image Retrieval.

    Google Scholar 

  47. Rios, A., & Kavuluru, R. (2018). Few-shot and zero-shot multi-label learning for structured label spaces. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing (pp. 3132–3142).

    Google Scholar 

  48. Chen, W., Liu, Y., Kira, Z., Wang, Y. F., & Huang, J. (2019). A closer look at few-shot classification. In International Conference on Learning Representations 2019. ArXiv, abs/1904.04232.

    Google Scholar 

  49. Dhillon, G. S., Chaudhari, P., Ravichandran, A., & Soatto, S. (2019). A baseline for few-shot image classification. In International Conference on Learning Representations 2020. ArXiv, abs/1909.02729.

    Google Scholar 

  50. London, A. (2019). Artificial intelligence and black-box medical decisions: accuracy versus explainability. The Hastings Center Report, 49, 15–21. https://doi.org/10.1002/hast.973.

    Article  Google Scholar 

  51. Yoichi, H. (2019). The right direction needed to develop white-box deep learning in radiology, pathology, and ophthalmology: a short review. Frontiers in Robotics and AI, 6, 24. https://doi.org/10.3389/frobt.2019.00024.

    Article  Google Scholar 

  52. Dey, N., et al. (2015). Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising. Journal of Imaging, 1, 60–84. https://doi.org/10.3390/jimaging1010060.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Kotia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotia, J., Kotwal, A., Bharti, R., Mangrulkar, R. (2021). Few Shot Learning for Medical Imaging. In: Das, S., Das, S., Dey, N., Hassanien, AE. (eds) Machine Learning Algorithms for Industrial Applications. Studies in Computational Intelligence, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-030-50641-4_7

Download citation

Publish with us

Policies and ethics