Skip to main content

ESO Architectures in the Trajectory Tracking ADR Controller for a Mechanical System: A Comparison

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Abstract

Proper operation of the Active Disturbance Rejection (ADR) controller requires a precise determination of the so-called total disturbance affecting the considered dynamical system, usually estimated by the Extended State Observer (ESO). The observation quality of total disturbance has a significant impact on the control error values, making room for a potential improvement of control system performance using different structures of ESO. In this article, we provide a quantitative comparison between the Luenberger and Astolfi/Marconi (AM) observers designed for three different extended state representations and utilized in the trajectory tracking ADR controller designed for a mechanical system. Included results were obtained in the simple simulation case, followed by the experimental validation on the main axis of a telescope mount.

This work was partially supported by grants No. 33/32/SIGR/0003 and No. 2014/15/B/ST7/00429.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astolfi, D., Marconi, L.: A high-gain nonlinear observer with limited gain power. IEEE Trans. Autom. Control 60(11), 3059–3064 (2015)

    Article  MathSciNet  Google Scholar 

  2. Canudas Wit, C., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995). https://doi.org/10.1109/9.376053

    Article  MathSciNet  MATH  Google Scholar 

  3. Gao, Z.: Active disturbance rejection control: a paradigm shift in feedback control system design. In: 2006 American Control Conference, p. 7 (2006)

    Google Scholar 

  4. Han, J.: From pid to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  5. Huang, Y., Xue, W.: Active disturbance rejection control: methodology and theoretical analysis. ISA Trans. 53(4), 963–976 (2014). Disturbance Estimation and Mitigation

    Article  MathSciNet  Google Scholar 

  6. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  7. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993–1015 (2014)

    Article  MathSciNet  Google Scholar 

  8. Kozlowski, K., Pazderski, D., Krysiak, B., Jedwabny, T., Piasek, J., Kozlowski, S., Brock, S., Janiszewski, D., Nowopolski, K.: High precision automated astronomical mount. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2019, pp. 299–315. Springer, Cham (2020)

    Chapter  Google Scholar 

  9. Łakomy, K., Michałek, M.M.: Robust output-feedback vfo-adr control of underactuated spatial vehicles a task of following the non-parametrized path (2020). arXiv:2001.01963 [eess.SY]

    Google Scholar 

  10. Madonski, R., Ramirez-Neria, M., Stanković, M., Shao, S., Gao, Z., Yang, J., Li, S.: On vibration suppression and trajectory tracking in largely uncertain torsional system: an error-based ADRC approach. Mech. Syst. Signal Process. 134, 106300 (2019)

    Article  Google Scholar 

  11. Martinez-Vazquez, D.L., Rodriguez-Angeles, A., Sira-Ramirez, H.: Robust GPI observer under noisy measurements. In: 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–5 (2009)

    Google Scholar 

  12. Michałek, M.M.: Robust trajectory following without availability of the reference time-derivatives in the control scheme with active disturbance rejection. In: 2016 American Control Conference (ACC), pp. 1536–1541 (2016)

    Google Scholar 

  13. Michałek, M.M., Łakomy, K., Adamski, W.: Robust output-feedback cascaded tracking controller for spatial motion of anisotropically-actuated vehicles. Aerosp. Sci. Technol. 92, 915–929 (2019)

    Article  Google Scholar 

  14. Patelski, R., Pazderski, D.: Tracking control for a cascade perturbed control system using the active disturbance rejection paradigm. Arch. Control Sci. 29(2), 387–408 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Peng, Z., Wang, J.: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. B Cybern. Syst. 48(4), 535–544 (2018)

    Article  Google Scholar 

  16. Piasek, J., Patelski, R., Pazderski, D., Kozłowski, K.: Identification of a dynamic friction model and its application in a precise tracking control. Acta Polytechnica Hungarica 16(10), 83–99 (2019)

    Article  Google Scholar 

  17. Wang, L., Astolfi, D., Marconi, L., Su, H.: High-gain observers with limited gain power for systems with observability canonical form. Automatica 75, 16–23 (2017)

    Article  MathSciNet  Google Scholar 

  18. Xue, W., Madonski, R., Lakomy, K., Gao, Z., Huang, Y.: Add-on module of active disturbance rejection for set-point tracking of motion control systems. IEEE Trans. Ind. Appl. 53(4), 4028–4040 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Łakomy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Łakomy, K., Patelski, R., Pazderski, D. (2020). ESO Architectures in the Trajectory Tracking ADR Controller for a Mechanical System: A Comparison. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_110

Download citation

Publish with us

Policies and ethics