Skip to main content

Deep Learning at the Edge for Operation and Maintenance of Large-Scale Solar Farms

  • Conference paper
  • First Online:
Smart Grid and Internet of Things (SGIoT 2020)

Abstract

Real-time monitoring of large-scale solar farms is one important aspect of reliable and secure deployment of 100% renewable energy-based grids. The ability to observe sensors on solar panels using Internet of Things (IoT) technologies makes it possible to study the behavior of solar panels under various conditions and to detect anomalous behaviors in real-time. Such technologies make it possible for grid administrators to make informed decisions in reacting to anomalies such as panel damage, electrical errors, monitoring hardware decay, or malicious data injection attacks. Smart edge devices offer an opportunity to reduce the cost of continuously sending data for anomaly detection by performing analytics on local edge device within a given farm and sending only the result of the analysis back to datacenters. This paper presents the design and evaluation of a low-cost edge-based anomaly detection system for remote solar farms using Raspberry Pi and deep learning. The design was implemented and tested using real-life observations from a solar monitoring system under soiling conditions. The experiments showed that it is possible to run real-time anomaly detection algorithms on edge devices with little overhead in terms of power consumption and utilization of computational resources, making it an ideal system for large-scale implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Islam, M.T., Huda, N., Abdullah, A.B., Saidur, R.: A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends. Renew. Sustain. Energy Rev. 91, 987–1018 (2018). https://doi.org/10.1016/j.rser.2018.04.097

    Article  Google Scholar 

  2. Nuortimo, K., Härkönen, J., Karvonen, E.: Exploring the global media image of solar power. Renew. Sustain. Energy Rev. 81, 2806–2811 (2018). https://doi.org/10.1016/j.rser.2017.06.086

    Article  Google Scholar 

  3. Renewable Capacity Statistics 2019. https://www.irena.org/publications/2019/Mar/Renewable-Capacity-Statistics-2019, Accessed 14 Oct 2019

  4. Renewable Energy Market Analysis: GCC 2019. https://www.irena.org/publications/2019/Jan/Renewable-Energy-Market-Analysis-GCC-2019, Accessed 25 Jan 2019

  5. Treyer, K., Bauer, C.: The environmental footprint of UAE's electricity sector: combining life cycle assessment and scenario modeling. Renew. Sustain. Energy Rev. 55, 1234–1247 (2016). https://doi.org/10.1016/j.rser.2015.04.016

    Article  Google Scholar 

  6. Jamil, M., Ahmad, F., Jeon, Y.J.: Renewable energy technologies adopted by the UAE: prospects and challenges – a comprehensive overview. Renew. Sustain. Energy Rev. 55, 1181–1194 (2016). https://doi.org/10.1016/j.rser.2015.05.087

    Article  Google Scholar 

  7. Yang, L., Gao, X., Lv, F., Hui, X., Ma, L., Hou, X.: Study on the local climatic effects of large photovoltaic solar farms in desert areas. Sol. Energy 144, 244–253 (2017). https://doi.org/10.1016/j.solener.2017.01.015

    Article  Google Scholar 

  8. Touati, F., Al-Hitmi, M., Bouchech, H.: Towards understanding the effects of climatic and environmental factors on solar PV performance in arid desert regions (Qatar) for various PV technologies. In: 2012 First International Conference on Renewable Energies and Vehicular Technology, pp. 78–83 (2012). https://doi.org/10.1109/REVET.2012.6195252.

  9. Fouad, M.M., Shihata, L.A., Morgan, E.I.: An integrated review of factors influencing the perfomance of photovoltaic panels. Renew. Sustain. Energy Rev. 80, 1499–1511 (2017). https://doi.org/10.1016/j.rser.2017.05.141

    Article  Google Scholar 

  10. Pandey, A.K., Tyagi, V.V., Selvaraj, J.A., Rahim, N.A., Tyagi, S.K.: Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew. Sustain. Energy Rev. 53, 859–884 (2016). https://doi.org/10.1016/j.rser.2015.09.043

    Article  Google Scholar 

  11. Rikos, E., Tselepis, S., Hoyer-Klick, C., Schroedter-Homscheidt, M.: Stability and power quality issues in microgrids under weather disturbances. IEEE J. Selected Top. Appl. Earth Obs. Remote Sens. 1, 170–179 (2008). https://doi.org/10.1109/JSTARS.2008.2010557

    Article  Google Scholar 

  12. Ahmed, M., Naser Mahmood, A., Hu, J.: A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 60, 19–31 (2016). https://doi.org/10.1016/j.jnca.2015.11.016

    Article  Google Scholar 

  13. Shapsough, S., Zualkernan, I.: Designing an edge layer for smart management of large-scale and distributed solar farms. In: Kim, K.J., Kim, H.-Y. (eds.) Information Science and Applications. LNEE, vol. 621, pp. 651–661. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1465-4_64

    Chapter  Google Scholar 

  14. Campbell, M.: World’s largest solar project to provide record-low energy tariffs. https://www.euronews.com/living/2020/05/05/world-s-largest-solar-project-to-provide-record-low-energy-tariffs, Accessed 29 June 2020

  15. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A.: Edge computing: a survey. Fut. Gener. Comput. Syst. 97, 219–235 (2019). https://doi.org/10.1016/j.future.2019.02.050

    Article  Google Scholar 

  16. Belhachat, F., Larbes, C.: A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions. Renew. Sustain. Energy Rev. 92, 513–553 (2018). https://doi.org/10.1016/j.rser.2018.04.094

    Article  Google Scholar 

  17. Das, S.K., Verma, D., Nema, S., Nema, R.K.: Shading mitigation techniques: state-of-the-art in photovoltaic applications. Renew. Sustain. Energy Rev. 78, 369–390 (2017). https://doi.org/10.1016/j.rser.2017.04.093

    Article  Google Scholar 

  18. Ramli, M.A.M., Twaha, S., Ishaque, K., Al-Turki, Y.A.: A review on maximum power point tracking for photovoltaic systems with and without shading conditions. Renew. Sustain. Energy Rev. 67, 144–159 (2017). https://doi.org/10.1016/j.rser.2016.09.013

    Article  Google Scholar 

  19. Said, Z., Arora, S., Bellos, E.: A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renew. Sustain. Energy Rev. 94, 302–316 (2018). https://doi.org/10.1016/j.rser.2018.06.010

    Article  Google Scholar 

  20. Andenæs, E., Jelle, B.P., Ramlo, K., Kolås, T., Selj, J., Foss, S.E.: The influence of snow and ice coverage on the energy generation from photovoltaic solar cells. Sol. Energy 159, 318–328 (2018). https://doi.org/10.1016/j.solener.2017.10.078

    Article  Google Scholar 

  21. Masdar City Solar Photovoltaic Plant. https://masdar.ae/en/MasdarCleanEnergy/Projects/MasdarCitySolarPhotovoltaicPlant, Accessed 27 May 2019

  22. Crot, L.: Planning for sustainability in non-democratic polities: the case of Masdar City. Urban Stud. 50, 2809–2825 (2013). https://doi.org/10.1177/0042098012474697

    Article  Google Scholar 

  23. Nath, M., Singh, D.: A Review on Performance Improvement of Solar Photovoltaic using Various Cooling Methods (2019)

    Google Scholar 

  24. Al-Housani, M., Bicer, Y., Koç, M.: Experimental investigations on PV cleaning of large-scale solar power plants in desert climates: comparison of cleaning techniques for drone retrofitting. Energy Convers. Manag. 185, 800–815 (2019). https://doi.org/10.1016/j.enconman.2019.01.058

    Article  Google Scholar 

  25. Luque, E.G., Antonanzas-Torres, F., Escobar, R.: Effect of soiling in bifacial PV modules and cleaning schedule optimization. Energy Convers. Manag. 174, 615–625 (2018). https://doi.org/10.1016/j.enconman.2018.08.065

    Article  Google Scholar 

  26. Katoch, S., Muniraju, G., Rao, S., Spanias, A., Turaga, P., Tepedelenlioglu, C., Banavar, M., Srinivasan, D.: Shading prediction, fault detection, and consensus estimation for solar array control. In: 2018 IEEE Industrial Cyber-Physical Systems (ICPS), pp. 217–222 (2018). https://doi.org/10.1109/ICPHYS.2018.8387662

  27. Shapsough, S., Dhaouadi, R., Zualkernan, I.: Using Linear regression and back propagation neural networks to predict performance of soiled PV modules. Procedia Comput. Sci. 155, 463–470 (2019). https://doi.org/10.1016/j.procs.2019.08.065

    Article  Google Scholar 

  28. Kim, K.A., Krein, P.T.: Reexamination of photovoltaic hot spotting to show inadequacy of the bypass diode. IEEE J. Photovoltaics 5, 1435–1441 (2015). https://doi.org/10.1109/JPHOTOV.2015.2444091

    Article  Google Scholar 

  29. Pillai, D.S., Blaabjerg, F., Rajasekar, N.: A comparative evaluation of advanced fault detection approaches for PV systems. IEEE J. Photovoltaics 9, 513–527 (2019). https://doi.org/10.1109/JPHOTOV.2019.2892189

    Article  Google Scholar 

  30. Guerriero, P., Daliento, S.: Toward a hot spot free PV module. IEEE J. Photovoltaics 9, 796–802 (2019). https://doi.org/10.1109/JPHOTOV.2019.2894912

    Article  Google Scholar 

  31. Manganiello, P., Balato, M., Vitelli, M.: A survey on mismatching and aging of PV modules: the closed loop. IEEE Trans. Ind. Electron. 62, 7276–7286 (2015). https://doi.org/10.1109/TIE.2015.2418731

    Article  Google Scholar 

  32. Niazi, K.A.K., Yang, Y., Sera, D.: Review of mismatch mitigation techniques for PV modules. IET Renew. Power Gener. 13, 2035–2050 (2019). https://doi.org/10.1049/iet-rpg.2019.0153

    Article  Google Scholar 

  33. Liu, G., Yu, W., Zhu, L.: Experiment-based supervised learning approach toward condition monitoring of PV array mismatch. Transm. Distrib. IET Gener. 13, 1014–1024 (2019). https://doi.org/10.1049/iet-gtd.2018.5164

    Article  Google Scholar 

  34. Azimi, I., Pahikkala, T., Rahmani, A.M., Niela-Vilén, H., Axelin, A., Liljeberg, P.: Missing data resilient decision-making for healthcare IoT through personalization: a case study on maternal health. Fut. Gener. Comput. Syst. 96, 297–308 (2019). https://doi.org/10.1016/j.future.2019.02.015

    Article  Google Scholar 

  35. Mukhopadhyay, S.C., Suryadevara, N.K.: Internet of Things: challenges and opportunities. In: Mukhopadhyay, S.C. (ed.) Internet of Things. SSMI, vol. 9, pp. 1–17. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04223-7_1

    Chapter  Google Scholar 

  36. Chakraborty, T., Nambi, A.U., Chandra, R., Sharma, R., Swaminathan, M., Kapetanovic, Z.: Sensor identification and fault detection in IoT systems. In: Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, pp. 375–376. Association for Computing Machinery, Shenzhen (2018). https://doi.org/10.1145/3274783.3275190

  37. Bouaichi, A., et al.: In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: the case of Morocco. Renew. Energy 143, 1500–1518 (2019). https://doi.org/10.1016/j.renene.2019.05.091

    Article  Google Scholar 

  38. Kimani, K., Oduol, V., Langat, K.: Cyber security challenges for IoT-based smart grid networks. Int. J. Crit. Infrastruct. Prot. 25, 36–49 (2019). https://doi.org/10.1016/j.ijcip.2019.01.001

    Article  Google Scholar 

  39. Otuoze, A.O., Mustafa, M.W., Larik, R.M.: Smart grids security challenges: classification by sources of threats. J. Electric. Syst. Inf. Technol. 5, 468–483 (2018). https://doi.org/10.1016/j.jesit.2018.01.001

    Article  Google Scholar 

  40. Shapsough, S., Qatan, F., Aburukba, R., Aloul, F., Ali, A.R.A.: Smart grid cyber security: Challenges and solutions. In: 2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), pp. 170–175 (2015). https://doi.org/10.1109/ICSGCE.2015.7454291.

  41. Mohammadpourfard, M., Sami, A., Weng, Y.: Identification of false data injection attacks with considering the impact of wind generation and topology reconfigurations. IEEE Trans. Sustain. Energy 9, 1349–1364 (2018). https://doi.org/10.1109/TSTE.2017.2782090

    Article  Google Scholar 

  42. Zhao, Y., Liu, Q., Li, D., Kang, D., Lv, Q., Shang, L.: Hierarchical anomaly detection and multimodal classification in large-scale photovoltaic systems. IEEE Trans. Sustain. Energy 10, 1351–1361 (2019). https://doi.org/10.1109/TSTE.2018.2867009

    Article  Google Scholar 

  43. Akiyama, Y., Kasai, Y., Iwata, M., Takahashi, E., Sato, F., Murakawa, M.: anomaly detection of solar power generation systems based on the normalization of the amount of generated electricity. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications, pp. 294–301 (2015). https://doi.org/10.1109/AINA.2015.198.

  44. Platon, R., Martel, J., Woodruff, N., Chau, T.Y.: Online fault detection in PV systems. IEEE Trans. Sustain. Energy 6, 1200–1207 (2015). https://doi.org/10.1109/TSTE.2015.2421447

    Article  Google Scholar 

  45. Gao, P.X., Golab, L., Keshav, S.: What’s wrong with my solar panels: a data-driven approach. In: EDBT/ICDT Workshops (2015)

    Google Scholar 

  46. Shi, Y., et al.: Expected output calculation based on inverse distance weighting and its application in anomaly detection of distributed photovoltaic power stations. J. Clean. Prod. 253, 119965 (2020). https://doi.org/10.1016/j.jclepro.2020.119965

    Article  Google Scholar 

  47. De Benedetti, M., Leonardi, F., Messina, F., Santoro, C., Vasilakos, A.: Anomaly detection and predictive maintenance for photovoltaic systems. Neurocomputing 310, 59–68 (2018). https://doi.org/10.1016/j.neucom.2018.05.017

    Article  Google Scholar 

  48. Magalhães, P.M.L.P., Martins, J.F.A., Joyce, A.L.M.: Comparative analysis of overheating prevention and stagnation handling measures for photovoltaic-Thermal (PV-T) systems. Energy Procedia 91, 346–355 (2016). https://doi.org/10.1016/j.egypro.2016.06.282

    Article  Google Scholar 

  49. Caballero, J.A., Fernández, E.F., Theristis, M., Almonacid, F., Nofuentes, G.: Spectral corrections based on air mass, aerosol optical depth, and precipitable water for PV performance modeling. IEEE J. Photovoltaics. 8, 552–558 (2018). https://doi.org/10.1109/JPHOTOV.2017.2787019

    Article  Google Scholar 

  50. Balarabe, M.A., Tan, F., Abdullah, K., Nawawi, M.N.M.: Temporal-spatial variability of seasonal aerosol index and visibility—aA case study of Nigeria. In: 2015 International Conference on Space Science and Communication (IconSpace), pp. 459–464 (2015) https://doi.org/10.1109/IconSpace.2015.7283769.

  51. ESP32 Overview | Espressif Systems. https://www.espressif.com/en/products/hardware/esp32/overview, Accessed 20 Oct 2018

  52. What is the LoRaWAN® Specification? https://lora-alliance.org/about-lorawan

  53. Banks, A., Gupta, R.: MQTT Version 3.1. 1. OASIS Standard (2014)

    Google Scholar 

  54. Mosquitto MQTT Server

    Google Scholar 

  55. Raspberry Pi - Teach, Learn, and Make with Raspberry Pi. https://www.raspberrypi.org/, Accessed 19 May 2017

  56. Shapsough, S., Takrouri, M., Dhaouadi, R., Zualkernan, I.: An IoT-based remote IV tracing system for analysis of city-wide solar power facilities. Sustain. Cities Soc. 57, 102041 (2020). https://doi.org/10.1016/j.scs.2020.102041

    Article  Google Scholar 

  57. Muñoz, J., Lorenzo, E.: Capacitive load based on IGBTs for on-site characterization of PV arrays. Sol. Energy 80, 1489–1497 (2006). https://doi.org/10.1016/j.solener.2005.09.013

    Article  Google Scholar 

  58. Shapsough, S., Dhaouadi, R., Zualkernan, I., Takrouri, M.: Power prediction via module temperature for solar modules under soiling conditions. In: Deng, D.-J., Pang, A.-C., Lin, C.-C. (eds.) SGIoT 2019. LNICSSITE, vol. 324, pp. 85–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49610-4_7

    Chapter  Google Scholar 

  59. TensorFlow. https://www.tensorflow.org/, Accessed 20 July 2020

  60. TensorFlow Lite | ML for Mobile and Edge Devices. https://www.tensorflow.org/lite, Accessed 20 July 2020

  61. Yocto-Amp - Tiny isolated USB ammeter (AC/DC). https://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-amp, Accessed 27 Mar 2017

  62. nmon for Linux. https://nmon.sourceforge.net/pmwiki.php, Accessed 28 Mar 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salsabeel Shapsough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shapsough, S., Zualkernan, I., Dhaouadi, R. (2021). Deep Learning at the Edge for Operation and Maintenance of Large-Scale Solar Farms. In: Lin, YB., Deng, DJ. (eds) Smart Grid and Internet of Things. SGIoT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 354. Springer, Cham. https://doi.org/10.1007/978-3-030-69514-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69514-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69513-2

  • Online ISBN: 978-3-030-69514-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics