Skip to main content

Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches

  • Chapter
New Directions in Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

In this paper we propose a well-balanced finite volume/augmented Lagrangian method for compressible visco-plastic models focusing on a compressible Bingham type system with applications to dense avalanches. For the sake of completeness we also present a method showing that such a system may be derived for a shallow flow of a rigid-viscoplastic incompressible fluid, namely for incompressible Bingham type fluid with free surface. When the fluid is relatively shallow and spreads slowly, lubrication-style asymptotic approximations can be used to build reduced models for the spreading dynamics, see for instance [N.J. Balmforth et al., J. Fluid Mech (2002)]. When the motion is a little bit quicker, shallow water theory for non-Newtonian flows may be applied, for instance assuming a Navier type boundary condition at the bottom. We start from the variational inequality for an incompressible Bingham fluid and derive a shallow water type system. In the case where Bingham number and viscosity are set to zero we obtain the classical Shallow Water or Saint-Venant equations obtained for instance in [J.F. Gerbeau, B. Perthame, DCDS (2001)]. For numerical purposes, we focus on the one-dimensional in space model: We study associated static solutions with sufficient conditions that relate the slope of the bottom with the Bingham number and domain dimensions. We also propose a well-balanced finite volume/augmented Lagrangian method. It combines well-balanced finite volume schemes for spatial discretization with the augmented Lagrangian method to treat the associated optimization problem. Finally, we present various numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Ancey. Plasticity and geophysical flows: A review. Journal of Non-Newtonian Fluid Mechanics, 142:4–35, 2007.

    Article  MATH  Google Scholar 

  2. C. Ancey et al. Dynamique des avalanches. Presses Polytechniques et Universitaires Romandes — CEMAGREF, 2006.

    Google Scholar 

  3. N. Balmforth, R. Craster, and R. Sassi. Shallow viscoplastic flow on an inclined plane. J. Fluid Mech., 470:1–29, 2002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. N. Balmforth, R. Craster, and R. Sassi. Dynamics of cooling viscoplastic domes. J. Fluid Mech., 499:149–182, 2004.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. I. Basov and V. Shelukhin. Generalized solutions to the equations of compressible Bingham flows. Z. Angew. Math. Mech., 79(3):185–192, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  6. I.V. Basov. Existence of a rigid core in the flow of a compressible Bingham fluid under the action of a homogeneous force. J. Math. Fluid Mech., 7(4):515–528, 2005.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. I.V. Basov. Long-time behavior of one-dimensional compressible Bingham flows. Z. Angew. Math. Phys., 57(1):59–75, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Bermúdez and M.E. Vázquez Cendón. Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids, 23(8):1049–1071, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  9. E.C. Bingham. Fluidity and Plasticity. Mc Graw-Hill, First edition, 1922.

    Google Scholar 

  10. M. Boutounet, L. Chupin, P. Noble, and J. Vila. Shallow water viscous flows for arbitrary topography. Communications in Mathematical Sciences, 6(1):29–55, March 2008.

    Google Scholar 

  11. D. Bresch and B. Desjardins. Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys., 238(1–2):211–223, 2003.

    MATH  MathSciNet  ADS  Google Scholar 

  12. V. Busuioc and D. Cioranescu. On the flow of a Bingham fluid passing through an electric field. Int. J. Non-Linear Mech., 38(3):287–304, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Castro-Díaz, T. Chacón-Rebollo, E. Fernández-Nieto, and C. Parés. On wellbalanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems. SIAM J. Sci. Comput., 29(3):1093–1126, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  14. O. Cazacu and N. Cristescu. Constitutive model and analysis of creep flow of natural slopes. Italian Geotechnical Journal, 34:44–54, 2000.

    Google Scholar 

  15. O. Cazacu and I.R. Ionescu. Compressible rigid viscoplastic fluids. J. Mech. Phys. Solids, 54(8):1640–1667, 2006.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. O. Cazacu, I.R. Ionescu, and T. Perrot. Numerical modeling of projectile penetration into compressible rigid viscoplastic media. Int. J. Numer Meth. Engng., 74(8): 1240–1261, 2007.

    Article  MathSciNet  Google Scholar 

  17. J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In R. Gunning, editor, Problems in Analysis, A Symposium in Honor of Salomon Bochner, pages 195–199. Princeton Univ. Press, 1970.

    Google Scholar 

  18. E. Christiansen. Handbook of numerical analysis. P.G. Ciarlet and J.L. Lions (Eds). Volume IV: Finite element methods (part 2), numerical methods for solids (part 2), chapter Limit analysis of collapse states, pages 193–312. North-Holland (Elsevier Science), 1995.

    Google Scholar 

  19. D. Cioranescu. Sur une classe de fluides non-newtoniens. Appl. Math. Optimization, 3:263–282, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  20. N. Cristescu. Plastic flow through conical converging dies, using a viscoplastic constitutive equation. Int. J. Mech. Sci., 17:425–433, 1975.

    Article  Google Scholar 

  21. N. Cristescu, O. Cazacu, and C. Cristescu. A model for landslides. Canadian Geotechnical Journal, 39:924–937, 2002.

    Article  Google Scholar 

  22. E. Dean, R. Glowinski, and G. Guidoboni. On the numerical simulation of Bingham visco-plastic flow: old and new results. Journal of Non Newtonian Fluid Mechanics, 142:36–62, 2007.

    Article  MATH  Google Scholar 

  23. F. Demengel. On some nonlinear equation involving the 1-Laplacian and trace map inequalities. Nonlinear Anal., Theory Methods Appl., 48(8):1151–1163, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Duvaut and J. Lions. Les inéquations en mécanique et en physique. Dunod, Paris, 1972.

    MATH  Google Scholar 

  25. E. Fernandez-Nieto, C. Lucas, and J. Zabsonré. A new estimate for Bingham flows. In preparation.

    Google Scholar 

  26. E. Fernandez-Nieto, P. Noble, and J. Vila. Shallow water equations for non newtonian fluids. In preparation.

    Google Scholar 

  27. M. Fortin and R. Glowinsky. Méthodes de Lagrangien Augmenté — Applications à la résolution numérique de problèmes aux limites. Méthodes Mathématiques de l’Informatique. Dunod, 1982.

    Google Scholar 

  28. J.-F. Gerbeau and B. Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst., Ser. B, 1(1):89–102, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  29. J.M. Greenberg and A.-Y. Le Roux. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal., 33(1):1–16, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. Hassani, I.R. Ionescu, and T. Lachand-Robert. Shape optimization and supremal minimization approaches in landslides modeling. Appl. Math. Optimization, 52(3):349–364, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  31. P. Hild, I.R. Ionescu, T. Lachand-Robert, and I. Roşca. The blocking of an inhomogeneous Bingham fluid. Applications to landslides. M2AN Math. Model. Numer. Anal., 36(6):1013–1026, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  32. I.R. Ionescu and T. Lachand-Robert. Generalized Cheeger sets related to landslides. Calc. Var. Partial Differential Equations, 23(2):227–249, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  33. I.R. Ionescu and E. Oudet. Discontinuous velocity domain splitting method in limit load analysis. In preparation.

    Google Scholar 

  34. B. Kawohl and V. Fridman. Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin., 44(4):659–667, 2003.

    MATH  MathSciNet  Google Scholar 

  35. R.J. LeVeque. Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys., 146(1):346–365, 1998.

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Mamontov. Existence of global solutions to multidimensional equations for Bingham fluids. Math. Notes, translation from Mat. Zametki 82, No. 4, 560–577 (2007), 82(4):501–517, 2007.

    MathSciNet  Google Scholar 

  37. C.C. Mei and M. Yuhi. Slow flow of a Bingham fluid in a shallow channel of finite width. J. Fluid Mech., 431:135–159, 2001.

    Article  MATH  ADS  Google Scholar 

  38. J. Oldroyd. A rational formulation of the equations of plastic flow for a Bingham solid. Proc. Camb. Philos. Soc., 43:100–105, 1947.

    Article  MATH  MathSciNet  Google Scholar 

  39. A. Oron, S.H. Davis, and S.G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69(3):931–980, Jul 1997.

    Google Scholar 

  40. S.P. Pudasaini and K. Hutter. Avalanche Dynamics — Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, 2007.

    Google Scholar 

  41. P. L. Roe. Upwind differencing schemes for hyperbolic conservation laws with source terms. In Nonlinear hyperbolic problems (St. Etienne, 1986). C. Carraso et al. (Eds), volume 1270 of Lecture Notes in Math., pages 41–51. Springer, Berlin, 1987.

    Chapter  Google Scholar 

  42. G. Seregin. Continuity for the strain velocity tensor in two-dimensional variational problems from the theory of the Bingham fluid. Ital. J. Pure Appl. Math., (2):141–150, 1997.

    Google Scholar 

  43. V.V. Shelukhin. Bingham viscoplastic as a limit of non-Newtonian fluids. J. Math. Fluid Mech., 4(2):109–127, 2002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. P.M. Suquet. Un espace fonctionnel pour les équations de la plasticité. Ann. Fac. Sci. Toulouse Math., Sér. 5, 1(1):77–87, 1979.

    MATH  MathSciNet  Google Scholar 

  45. R. Temam and G. Strang. Functions of bounded deformation. Arch. Rational Mech. Anal., 75(1):7–21, 1980.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. J.-P. Vila. Sur la théorie et l’approximation numérique des problèmes hyperboliques non-linéaires, application aux équations de Saint-Venant et à la modélisation des avalanches denses. PhD thesis, Université Paris VI, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Professor Alexandre V. Kazhikov

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Bresch, D., Fernández-Nieto, E.D., Ionescu, I.R., Vigneaux, P. (2009). Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches. In: Fursikov, A.V., Galdi, G.P., Pukhnachev, V.V. (eds) New Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0152-8_4

Download citation

Publish with us

Policies and ethics