Skip to main content

Disease mechanisms, genetic susceptibility and therapeutic approaches in lupus disease

  • Chapter
Gene Therapy for Autoimmune and Inflammatory Diseases

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 987 Accesses

Abstract

Lupus is a prototype autoimmune disease with unknown etiology. The disease is complex; presented with diverse clinical manifestations caused by different disease mechanisms. The complex nature of lupus immunopathology has provided a fertile field to investigate disease mechanisms and explore new approaches for therapy. However, it is also this complexity that is hampering efforts to identify therapies that benefit most patients. In this chapter, we will briefly allude to some of the known immunological defects encountered in lupus and summarise recent advance in identifying new susceptibility genetic factors. We will also provide an overview of biological agents used for treatment of patient groups and new directions for gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mageed RA, Prud’homme GJ (2003) Immunopathology and the gene therapy of lupus. Gene Therapy 10: 861–874

    Article  CAS  PubMed  Google Scholar 

  2. Rhodes B, Vyse TJ (2008) The genetics of SLE: an update in the light of genome-wide association studies. Rheumatol 47: 1603–1611

    Article  CAS  Google Scholar 

  3. Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P, Walker A, Mack TM (1992) A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 35: 311–318

    Article  CAS  PubMed  Google Scholar 

  4. Alarcon-Segovia D, Alarcon-Requelme ME, Cardiel MH, Caeiro F, Massardo L, Villa AR, Pons-Estel BA, Grupo Latinoamericano de Estudio del lupus Eritematoso (GLADEL) (2005) Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum 52: 1138–1147

    Article  PubMed  Google Scholar 

  5. Manderson AP, Botto M, Walport MJ (2004) The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 22: 431–456

    Article  CAS  PubMed  Google Scholar 

  6. Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L, Heward JM, Gough SCL, de Smith A, Blakemore AIF et al. (2007) FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 39: 721–723

    Article  CAS  PubMed  Google Scholar 

  7. Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, de Silva U, Bailey SL, Witte T, Vyse TJ et al. (2007) Mutations in the gene encoding the 30–50 DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 39: 1065–1067

    Article  CAS  PubMed  Google Scholar 

  8. Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL, Schwartzberg PL, Cook MC, Walters GD, Vinuesa CG (2009) Follicular helper T cells are required for systemic autoimmunity. J Exp Med 206: 561–576

    Article  CAS  PubMed  Google Scholar 

  9. Mudd PA, Teague BN, Farris AD (2006) Regulatory T cells and systemic lupus erythematosus. Scand J Immunol 64: 211–218

    Article  CAS  PubMed  Google Scholar 

  10. Solomou EE, Juang YT, Gourley MF, Kammer GM, Tsokos GC (2001) Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus. J Immunol 166: 4216–4222

    CAS  PubMed  Google Scholar 

  11. Horwitz DA, Tang FL, Stimmler MM, Oki A, Gray JD (1997) Decreased T cell response to anti-CD2 in systemic lupus erythematosus and reversal by anti-CD28: evidence for impaired T cellaccessory cell interaction. Arthritis Rheum 40: 822–833

    Article  CAS  PubMed  Google Scholar 

  12. Sierakowski S, Kucharz EJ, Lightfoot RW, Goodwin JS (1989) Impaired T-cell activation in patients with systemic lupus erythematosus. J Clin Immunol 9: 469–676

    Article  CAS  PubMed  Google Scholar 

  13. Wong HK, Kammer GM, Dennis G, Tsokos GC (1999) Abnormal NF-kappa B activity in T lymphocytes from patients with systemic lupus erythematosus is associated with decreased p65-RelA protein expression. J Immunol 163: 1682–1689

    CAS  PubMed  Google Scholar 

  14. Yi Y, McNerney M, Datta SK (2000) Regulatory defects in Cbl and mitogen-activated protein kinase (extracellular signal-related kinase) pathways cause persistent hyperexpression of CD40 ligand in human lupus T cells. J Immunol 165: 6627–6634

    CAS  PubMed  Google Scholar 

  15. Yurasov S, Wardemann H, Hammersen J, Tsuiji M, Meffre E, Pascual V, Nussenzweig MC (2005) Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med 201: 703–711

    Article  CAS  PubMed  Google Scholar 

  16. Reininger L, Winkler T, Kalberer CP, Jourdan M, Melchers F, Rolink AG (1996) Intrinsic B cell defects in NZB and NZW mice contribute to systemic lupus erythematosus in (NZB × NZW)F1 mice. J Exp Med 184: 853–861

    Article  CAS  PubMed  Google Scholar 

  17. Wakeland EK, Liu K, Graham RR, Behrens TW (2001) Delineating the genetic basis of systemic lupus erythematosus. Immunity 15: 397–408

    Article  CAS  PubMed  Google Scholar 

  18. Yanaba K, Bouaziz JD, Matsushita T, Magro CM, St Clair EW, Tedder TF (2008) B-lymphocyte contributions to human autoimmune disease. Immunol Rev 223: 284–299

    Article  CAS  PubMed  Google Scholar 

  19. Folzenlogen D, Hofer MF, Leung DY, Freed JH, Newell MK (1997) Analysis of CD80 and CD86 expression on peripheral blood B lymphocytes reveals increased expression of CD86 in lupus patients. Clin Immunol Immunopathol 83: 199–204

    Article  CAS  PubMed  Google Scholar 

  20. Zouali M, Sarmay G (2004) B lymphocyte signaling pathways in systemic autoimmunity: implications for pathogenesis and treatment. Arthritis Rheum 50: 2730–2741

    Article  CAS  PubMed  Google Scholar 

  21. Salmon JE, Millard S, Schachter LA, Arnett FC, Ginzler EM, Gourley MF, Ramsey-Goldman R, Peterson MG, Kimberly RP (1996) Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 97: 1348–1354

    Article  CAS  PubMed  Google Scholar 

  22. Rönnblom L, Eloranta ML, Alm GV (2006) The type I interferon system in systemic lupus erythematosus. Arthritis Rheum 54: 408–420

    Article  PubMed  Google Scholar 

  23. Dauphinee MJ, Kipper SB, Wofsy D, Talal N (1981) Interleukin 2 deficiency is a common feature of autoimmune mice. J Immunol 127: 2483–2487

    CAS  PubMed  Google Scholar 

  24. Kammer GM (1999) High prevalence of T cell type I protein kinase A deficiency in systemic lupus erythematosus. Arthritis Rheum 42: 1458–1465

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka T, Saiki O, Negoro S, Igarashi T, Kuritani T, Hara H, Suemura M, Kishimoto S (1989) Decreased expression of interleukin-2 binding molecules (p70/75) in T cells from patients with systemic lupus erythematosus. Arthritis Rheum 32: 552–559

    Article  CAS  PubMed  Google Scholar 

  26. Prud’homme GJ, Kono DH, Theofilopoulos AN (1995) Quantitative polymerase chain reaction analysis reveals marked overexpression of interleukin-1 beta, interleukin-1 and interferon-gamma mRNA in the lymph nodes of lupus-prone mice. Mol Immunol 32: 495–503

    Article  CAS  Google Scholar 

  27. Rönnblom L, Pascual V (2008) The innate immune system in SLE: type I interferons and dendritic cells. Lupus 17: 394–399

    Article  PubMed  Google Scholar 

  28. Graninger WB, Hassfeld W, Pesau BB, Machold KP, Zielinski CC, Smolen JS (1991) Induction of systemic lupus erythematosus by interferon-gamma in a patient with rheumatoid arthritis. J Rheumatol 18: 1621–1622

    CAS  PubMed  Google Scholar 

  29. Dueymes M, Barrier J, Besancenot JF, Cledes J, Conri C, Dien G, Drosos AA, Dueymes JM, Galanaud P, Grobois B et al. (1993) Relationship of interleukin-4 to isotypic distribution of antidouble-stranded DNA antibodies in systemic lupus erythematosus. Int Arch Allergy Immunol 101: 408–415

    Article  CAS  PubMed  Google Scholar 

  30. Santiago ML, Fossati L, Jacquet C, Muller W, Izui S, Reininger L (1997) Interleukin-4 protects against a genetically linked lupus-like autoimmune syndrome. J Exp Med 185: 65–70

    Article  CAS  PubMed  Google Scholar 

  31. Garaud S, Le Dantec C, Jousse-Joulin S, Hanrotel-Saliou C, Saraux A, Mageed RA, Youinou P, Renaudineau Y (2009) IL-6 modulates CD5 expression in B cells from patients with lupus by regulating DNA methylation. J Immunol 182: 5623–5632

    Article  CAS  PubMed  Google Scholar 

  32. Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179: 1317–1330

    Article  CAS  PubMed  Google Scholar 

  33. Hagiwara E, Gourley MF, Lee S, Klinman DK (1996) Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10:interferon-gamma-secreting cells in the peripheral blood. Arthritis Rheum 39: 379–385

    Article  CAS  PubMed  Google Scholar 

  34. Alleva DG, Kaser SB, Beller DI (1998) Intrinsic defects in macrophage IL-12 production associated with immune dysfunction in the MRL/++ and New Zealand Black/White F1 lupus-prone mice and the Leishmania major-susceptible BALB/c strain. J Immunol 161: 6878–6884

    CAS  PubMed  Google Scholar 

  35. Huang FP, Feng GJ, Lindop G, Stott DI, Liew FY (1996) The role of interleukin 12 and nitric oxide in the development of spontaneous autoimmune disease in MRLMP-lprlpr mice. J Exp Med 183: 1447–1459

    Article  CAS  PubMed  Google Scholar 

  36. Jacob CO, McDevitt HO (1988) Tumour necrosis factor-α in murine autoimmune ‘lupus’ nephritis. Nature 331: 356–358

    Article  CAS  PubMed  Google Scholar 

  37. Aringer M, Steiner G, Graninger WB, Höfler E, Steiner CW, Smolen JS (2007) Effects of shortterm infliximab therapy on autoantibodies in systemic lupus erythematosus. Arthritis Rheum 56: 274–279

    Article  CAS  PubMed  Google Scholar 

  38. Ohtsuka K, Gray JD, Stimmler MM, Toro B, Horwitz DA (1998) Decreased production of TGFbeta by lymphocytes from patients with systemic lupus erythematosus. J Immunol 160: 2539–2545

    CAS  PubMed  Google Scholar 

  39. Harley JB, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsao BP, Vyse TJ, Langefeld CD, Nath SK et al. (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40: 204–210

    Article  CAS  PubMed  Google Scholar 

  40. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, Lee AT, Chung SA, Ferreira RC, Pant PV et al. (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358: 900–909

    Article  CAS  PubMed  Google Scholar 

  41. James JA, Harley JB, Scofield RH (2006) Epstein-Barr virus and systemic lupus erythematosus. Curr Opin Rheumatol 18: 462–467

    Article  PubMed  Google Scholar 

  42. Yang Y, Chung EK, Wu YL, Savelli SL, Nagaraja HN, Zhou B, Hebert M, Jones KN, Shu Y, Kitzmiller K et al. (2007) Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 80: 1037–1054

    Article  CAS  PubMed  Google Scholar 

  43. Cunninghame Graham DS, Graham RR, Manku H, Wong AK, Whittaker JC, Gaffney PM, Moser KL, Rioux JD, Altshuler D, Behrens TW et al. (2008) Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet 40: 83–89

    Article  CAS  PubMed  Google Scholar 

  44. Lane P (2000) Role of OX40 signals in coordinating CD4T cell selection, migration, and cytokine differentiation in T helper (Th)1 and Th2 cells. J Exp Med 191: 201–206

    Article  CAS  PubMed  Google Scholar 

  45. Ito T, Wang YH, Duramad O, Hanabuchi S, Perng OA, Gilliet M, Qin FX, Liu YJ (2006) OX40 ligand shuts down IL-10-producing regulatory T cells. Proc Natl Acad Sci USA 103: 13138–13143

    Article  CAS  PubMed  Google Scholar 

  46. Stuber E, Strober W (1996) The T cell-B cell interaction via OX40-OX40L is necessary for the T cell-dependent humoral immune response. J Exp Med 183: 979–989

    Article  CAS  PubMed  Google Scholar 

  47. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, Shark KB, Grande WJ, Hughes KM, Kapur V et al. (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 100: 2610–2615

    Article  CAS  PubMed  Google Scholar 

  48. Braun D, Caramalho I, Demengeot J (2002) IFN-alpha/beta enhances BCR-dependent B cell responses. Int Immunol 14: 411–419

    Article  CAS  PubMed  Google Scholar 

  49. Barnes BJ, Kellum MJ, Pinder KE, Frisancho JA, Pitha PM (2003) Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death. Cancer Res 63: 6424–6431

    CAS  PubMed  Google Scholar 

  50. Cornall R, Cyster J, Hibbs M, Dunn A, Otipoby K, Clark A, Goodnow CC (1998) Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8: 497–508

    Article  CAS  PubMed  Google Scholar 

  51. Flores-Borja F, Kabouridis PS, Jury EC, Isenberg DA, Mageed RA (2005) Decreased Lyn expression and translocation to lipid raft signalling domains in B-lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 52: 3955–3965

    Article  CAS  PubMed  Google Scholar 

  52. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A, Gadina M, O’Shea JJ, Biron CA (2002) Critical role for STAT4 activation by type 1 interferons in the interferongamma response to viral infection. Science 297: 2063–2066

    Article  CAS  PubMed  Google Scholar 

  54. Moynihan TP, Cole CG, Dunham I, O’Neil L, Markham AF, Robinson PA (1998) Finemapping, genomic organization, and transcript analysis of the human ubiquitinconjugating enzyme gene UBE2L3. Genomics 51: 124–127

    Article  CAS  PubMed  Google Scholar 

  55. Jury EC, Kabouridis PS, Abba A, Mageed RA, Isenberg DA (2003) Increased ubiquitination and reduced expression of Lck in T lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 48: 1343–1354

    Article  CAS  PubMed  Google Scholar 

  56. Yousefi S, Simon HU (2007) Apoptosis regulation by autophagy gene 5. Crit Rev Oncol Hematol 63: 241–244

    Article  PubMed  Google Scholar 

  57. Youinou P, Taher TE, Mankaï A, Berthou C, Mageed RA (2008) Anti-CD20 in targeting B-lymphocytes for the treatment of autoimmune diseases. Clinical benefits and insights into the role of B-lymphocytes in pathophysiology. Immunol Endocrine Metabol Agents Med Chem 8: 222–234

    Article  CAS  Google Scholar 

  58. Lu T, Ng KP, Cambridge G, Leandro MJ, Edwards JCW, Ehrenstein M, Isenberg DA (2009) A retrospective seven-year analysis of the use of B cell depletion therapy in systemic lupus erythematosus at University College London Hospital: the first fifty patients. Arthritis Rheum 61: 482–487

    Article  PubMed  Google Scholar 

  59. Dörner T, Kaufmann J, Wegener WA, Teoh N, Goldenberg DM, Burmester GR (2006) Initial clinical trial of Epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther 8: R74

    Article  PubMed  Google Scholar 

  60. Coutts SM, Plunkett ML, Iverson GM, Barstad PA, Berner CM (1996) Pharmacological intervention in antibody mediated disease. Lupus 5: 158–159

    Article  CAS  PubMed  Google Scholar 

  61. Alarcón-Segovia D, Tumlin J, Furie RA, McKay JD, Cardiel MH, Strand V, Bagin RG, Linnik MD, Hepburn B; LJP 394 Investigator Consortium (2003) LJP 394 for the prevention of renal flare in patients with systemic lupus erythematosus: results from a randomized, double-blind, placebocontrolled study. Arthritis Rheum 48: 442–454

    Article  PubMed  Google Scholar 

  62. Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M, Frew E, Scott ML (2001) An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293: 2111–2114

    Article  CAS  PubMed  Google Scholar 

  63. Cheema GS, Roschke V, Hilbert DM, Stohl W (2001) Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 44: 1313–1319

    Article  CAS  PubMed  Google Scholar 

  64. Ramanujam M, Wang X, Huang W, Schiffer L, Grimaldi C, Akkerman A, Diamond B, Madaio MP, Davidson A (2004) Mechanism of action of transmembrane activator and calcium modulator ligand interactor-Ig in murine systemic lupus erythematosus. J Immunol 173: 3524–3534

    CAS  PubMed  Google Scholar 

  65. Furie R, Stohl W, Ginzler E, Becker M, Mishra N, Chatham W, Merrill JT, Weinstein A, McCune WJ, Zhong J et al. (2008) Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther 10: R109

    Article  PubMed  Google Scholar 

  66. Ding C (2008) Belimumab, an anti-BLyS human monoclonal antibody for potential treatment of inflammatory autoimmune diseases. Expert Opin Biol Ther 8: 1805–1814

    Article  CAS  PubMed  Google Scholar 

  67. Dall’Era M, Chakravarty E, Wallace D, Genovese M, Weisman M, Kavanaugh A, Kalunian K, Dhar P, Vincent E, Pena-Rossi C et al. (2007) Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum 56: 4142–4150

    Article  PubMed  Google Scholar 

  68. Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK (1996) Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 97: 2063–2073

    Article  CAS  PubMed  Google Scholar 

  69. García-Cózar FJ, Molina IJ, Cuadrado MJ, Marubayashi M, Peña J, Santamaría M (1996) Defective B7 expression on antigen-presenting cells underlying T cell activation abnormalities in systemic lupus erythematosus (SLE) patients. Clin Exp Immunol 104: 72–79

    Article  PubMed  Google Scholar 

  70. Kalunian KC, Davis Jr, JC, Merrill JT, Totoritis MC, Wofsy D, for the IDEC-131 Lupus Study Group (2002) Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154. Arthritis Rheum 46: 3251–3258

    Article  CAS  PubMed  Google Scholar 

  71. Kawai T, Andrews D, Colvin R, Sachs D, Cosimi A (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 6: 114

    Article  CAS  Google Scholar 

  72. Finck BK, Linsley PS, Wofsy D (1994) Treatment of murine lupus with CTLA4Ig. Science 265: 1225–1227

    Article  CAS  PubMed  Google Scholar 

  73. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, Birbara C, Box J, Natarajan K, Nuamah I et al. (2005) Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 353: 1114–1123

    Article  CAS  PubMed  Google Scholar 

  74. Liang B, Gardner DB, Griswold DE, Bugelski PJ, Song XY (2006) Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunol 119: 296–305

    Article  CAS  Google Scholar 

  75. Choy E (2009) RADIATE: more treatment options for patients with an inadequate response to tumor necrosis factor antagonists. Nat Clin Pract Rheumatol 5: 66–67

    Article  CAS  PubMed  Google Scholar 

  76. Ishida H, Muchamuel T, Sakaguchi S, Andrade S, Menon S, Howard M (1994) Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J Exp Med 179: 305–310

    Article  CAS  PubMed  Google Scholar 

  77. Llorente L, Richaud-Patin Y, García-Padilla C, Claret E, Jakez-Ocampo J, Cardiel MH, Alcocer-Varela J, Grangeot-Keros L, Alarcón-Segovia D, Wijdenes J et al. (2000) Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum 43: 1790–1800

    Article  CAS  PubMed  Google Scholar 

  78. Aringer M, Graninger WB, Steiner G, Smolen JS (2004) Safety and efficacy of TNFα blockage in systemic lupus erythematosus — an open label study. Arthritis Rheum 50: 3161–3169

    Article  CAS  PubMed  Google Scholar 

  79. Charles PJ, Smeenk RJ, De Jong J, Feldmann M, Maini RN (2000) Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor alpha: findings in open-label and randomized placebo-controlled trials. Arthritis Rheum 43: 2383–2390

    Article  CAS  PubMed  Google Scholar 

  80. Pascual V, Farkas L, Banchereau J (2006) Systemic lupus erythematosus: all roads lead to type I interferons. Curr Opin Immunol 18: 676–682

    Article  CAS  PubMed  Google Scholar 

  81. Zagury D, Le Buanec H, Mathian A, Larcier P, Burnett R, Amoura Z, Emilie D, Peltre G, Bensussan A, Bizzini B et al. (2009) IFNalpha kinoid vaccine-induced neutralizing antibodies prevent clinical manifestations in a lupus flare murine model. Proc Natl Acad Sci USA 106: 5294–5299

    Article  CAS  PubMed  Google Scholar 

  82. Wang Y, Hu Q, Madri J, Rollins S, Chodera A, Matis L (1996) Amelioration of lupus-like autoimmune disease in NZB/W F1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc Natl Acad Sci USA 93: 8563–8568

    Article  CAS  PubMed  Google Scholar 

  83. Bao L, Osawe I, Puri T, Lambris JD, Haas M, Quigg RJ (2005) C5a promotes development of experimental lupus nephritis which can be blocked with a specific receptor antagonist. Eur J Immunol 35: 2496–2506

    Article  CAS  PubMed  Google Scholar 

  84. Robak E, Robak T (2009) Monoclonal antibodies in the treatment of systemic lupus erythematosus. Curr Drug Targets 10: 26–37

    Article  CAS  PubMed  Google Scholar 

  85. Macanovic M, Lachmann PJ (1997) Measurement of deoxyribonuclease I (DNase) in the serum and urine of systemic lupus erythematosus (SLE)-prone NZB/NZW mice by a new radial enzyme diffusion assay. Clin Exp Immunol 108: 220–226

    Article  CAS  PubMed  Google Scholar 

  86. Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Möröy T (2000) Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet 25: 177–181

    Article  CAS  PubMed  Google Scholar 

  87. Yasutomo K, Horiuchi T, Kagami S, Tsukamoto H, Hashimura C, Urushihara M, Kuroda Y (2001) Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 28: 313–314

    Article  CAS  PubMed  Google Scholar 

  88. Tinazzi E, Puccetti A, Gerli R, Rigo A, Migliorini P, Simeoni S, Beri R, Dolcino M, Martinelli N, Corrocher R et al. (2009) Serum DNase I, soluble Fas/FasL levels and cell surface Fas expression in patients with SLE: a possible explanation for the lack of efficacy of hrDNase I treatment. Int Immunol 21: 237–243

    Article  CAS  PubMed  Google Scholar 

  89. Nambiar MP, Fisher CU, Warke VG, Krishnan S, Mitchell JP, Delaney N, Tsokos GC (2003) Reconstitution of deficient T cell receptor zeta chain restores T cell signaling and augments T cell receptor/CD3-induced interleukin-2 production in patients with systemic lupus erythematosus. Arthritis Rheum 48: 1948–1955

    Article  CAS  PubMed  Google Scholar 

  90. Raz E, Dudler J, Lotz M, Baird SM, Berry CC, Eisenberg RA, Carson DA (1995) Modulation of disease activity in murine systemic lupus erythematosus by cytokine gene delivery. Lupus 4: 286–292

    Article  CAS  PubMed  Google Scholar 

  91. Fujio K, Okamura T, Okamoto A, Yamamotot K (2007) cell receptor gene therapy for autoimmune diseases. Ann N Y Acad Sci 1110: 222–232

    Article  CAS  PubMed  Google Scholar 

  92. Ding H, Wu X, Wu J, Yagita H, He Y, Zhang J, Ren J, Gao W (2006) Delivering PD-1 inhibitory signal concomitant with blocking ICOS co-stimulation suppresses lupus-like syndrome in autoimmune BXSB mice. Clin Immunol 118: 258–267

    Article  CAS  PubMed  Google Scholar 

  93. Ye X, Zhu T, Bastacky S, McHale T, Li J, Xiao X (2005) Prevention and reversal of lupus in NZB/NZW mice by costimulatory blockade with adeno-associated virus-mediated gene transfer. Arthritis Rheum 52: 3975–3986

    Article  CAS  PubMed  Google Scholar 

  94. Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, Tschopp J, Browning JL (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190: 1697–1710

    Article  CAS  PubMed  Google Scholar 

  95. Liu W, Szalai A, Zhao L, Liu D, Martin F, Kimberly RP, Zhou T, Carter RH (1995) Control of spontaneous B lymphocyte autoimmunity with adenovirus-encoded soluble TACI. Arthritis Rheum 50: 1884–1896

    Article  Google Scholar 

  96. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416: 603–607

    Article  CAS  PubMed  Google Scholar 

  97. Pawar RD, Ramanjaneyulu A, Kulkarni OP, Lech M, Segerer S, Anders H-J (2007) Inhibition of toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephrol 18: 1721–1731

    Article  CAS  PubMed  Google Scholar 

  98. Muraoka M, Hasegawa H, Kohno M, Inoue A, Miyazaki T, Terada M, Nose M, Yasukawa M (2006) IK cytokine ameliorates the progression of lupus nephritis in MRL/lpr Mice. Arthritis Rheum 54: 3591–3600

    Article  CAS  PubMed  Google Scholar 

  99. Shimizu S, Nakashima H, Masutani K, Inoue Y, Miyake K, Akahoshi M, Tanaka Y, Egashira K, Hirakata H, Otsuka T et al. (2004) Anti-monocyte chemoattractant protein-1 gene therapy attenuates nephritis in MRL/lpr mice. Rheumatol 43: 1121–1128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel

About this chapter

Cite this chapter

Mageed, R.A., Taher, T.E., Jawad, A.S. (2010). Disease mechanisms, genetic susceptibility and therapeutic approaches in lupus disease. In: Chernajovsky, Y., Robbins, P.D. (eds) Gene Therapy for Autoimmune and Inflammatory Diseases. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0346-0165-8_9

Download citation

Publish with us

Policies and ethics