Skip to main content

Specificity of Binding with Matrix Metalloproteinases

  • Chapter
  • First Online:
Matrix Metalloproteinase Inhibitors

Part of the book series: Experientia Supplementum ((EXS,volume 103))

Abstract

Matrix metalloproteinases (MMPs) regulate a wide range of biological functions; hence, they have invited great attention for the studies on their structures and functions, and since their overactivation leads to several diseases, the design and discovery of their potent inhibitors have become the need of the day. Since there have been so far discovered 28 different types of human MMPs, the specificity of binding of inhibitors with each different MMP needs special attention. The chapter presents the X-ray crystallographic and NMR studies on three-dimensional structures of a number of MMPs to reveal their catalytic site, subsites, specificity of binding with substrate and inhibitors, and catalytic mechanism. In addition to catalytic site, MMPs possess some subsites designated by unprimed and primed S, e.g., S1, S2, S3 and S1′, S2′, S3′. Among these, the S1′ pocket varies the most among the different MMPs varying in both the amino acid makeup and depth of the pocket (shallow, intermediate, and deep pocket MMPs). This, along with the flexibility in the structures of MMPs, could be of great help in the design and the development of selective MMP inhibitors (MMPIs). The determination of affinity of inhibitors and the cleavage position of peptide substrates is mainly based on P1′–S1′ interaction (P1′, the group in inhibitor or substrate binding to S1′ pocket of the enzyme), and it is the main determinant for the affinity of inhibitors and the cleavage position of peptide substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

ADAMs:

A disintegrin and metalloproteinases

CPOD:

Chronic obstructive pulmonary disease

ECM:

Extracellular matrix protein

GPI:

Glycosylphosphatidylinositol

Hpx domain:

Hemopexin-like domain

MMPI:

Matrix metalloproteinase inhibitor

MMPs:

Matrix metalloproteinases

MT-MMPs:

Membrane-type MMPs

TIMPs:

Tissue inhibitors of metalloproteinases

TNF-α:

Tumor necrosis factor-α

ZBG:

Zinc-binding group

References

  • Aureli L, Gioia M, Cerbara I, Monaco S, Fasciglione GF, Marini S, Ascenzi P, Topai A, Coletta M (2008) Structural basis for substrate and inhibitor recognition by matrix metalloproteinases. Curr Med Chem 15:2192–2222

    Article  PubMed  CAS  Google Scholar 

  • Babine RE, Bender SL (1997) Molecular recognition of protein-ligand complexes: applications to drug design. Chem Rev 97:1359–1472

    Article  PubMed  CAS  Google Scholar 

  • Beckett R, Whittaker M (1998) Matrix metalloproteinase inhibitors. Exp Opin Ther Pat 8:259–282

    Article  CAS  Google Scholar 

  • Bertini I, Calderone V, Fragai M, Luchinat C, Maletta M, Yeo KJ (2006) Snapshots of the reaction mechanism of MMP. Angew Chem Int Ed Engl 45:7952–7955

    Article  PubMed  CAS  Google Scholar 

  • Blagg JA, Noe MC, Wolf-Gouveia LA, Reiter LA, Laird ER, Chang SPP, Danley DE, Downs JT, Elliott NC, Eskra JD, Griffiths RJ, Hardink JR, Haugeto AI, Jones CS, Liras JL, Lopresti-Morrow LL, Mitchell PG, Pandit J, Robinson RP, Subramanyam C, Vaughn-Bowser ML, Yocum SA (2005) Potent pyrimidinetrione-based inhibitors of MMP-13 with enhanced selectivity over MMP-14. Bioorg Med Chem Lett 15:1807–1810

    Article  PubMed  CAS  Google Scholar 

  • Bode W, Fernandez-Catalan C, Grams F, Gomis-Ruth F, Nagase H, Tschesche H, Maskos K (1999) Insights into MMP-TIMP Interactions. Ann N Y Acad Sci 878:73–91

    Article  PubMed  CAS  Google Scholar 

  • Borkakoti N, Winkler FK, Williams DH, D’Arcy A, Broadhurst MJ, Brown PA, Johnson WH, Murray EJ (1994) Structure and the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nat Struct Biol 1:106–110

    Article  PubMed  CAS  Google Scholar 

  • Botos I, Scapozza L, Zhang D, Liotta LA, Meyer EF (1996) Batimastat, a potent matrix metalloproteinase inhibitor, exhibits an unexpected mode of binding. Proc Natl Acad Sci USA 93:2749–2754

    Article  PubMed  CAS  Google Scholar 

  • Bottomley KM, Johnson WH, Walter DS (1998) MMP inhibitors in arthritis. J Enzyme Inhib 13:79–101

    Article  PubMed  CAS  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochem Biophys Acta 1477:267–283

    Article  PubMed  CAS  Google Scholar 

  • Browner MF, Smith WW, Castelhano AL (1995) Matrilysin-inhibitor complexes: common themes among metalloproteinases. Biochemistry 34:6602–6610

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Nelson FC, Levin JI, Mobilio D, Moy FJ, Nilakantan R, Zask A, Powers R (2000) Structure-based design of a novel, potent, and selective inhibitor of MMP-13 utilizing NMR spectroscopy and computer-aided molecular design. J Am Chem Soc 122:9648–9654

    Article  CAS  Google Scholar 

  • Dublanchet AC, Ducrot P, Andrianjara C, O’Gara M, Morales R, Compere D, Denis A, Blais S, Cluzeau P, Courte K, Hamon J, Moreau F, Prunet ML, Tertre A (2005) Structure based design and synthesis of novel non-zinc chelating MMP-12 inhibitors. Bioorg Med Chem Lett 15:181–189

    Article  Google Scholar 

  • Engel CK, Pirard B, Schimanski S, Kirsch R, Habermann J, Klinger O, Schlotte V, Weithmann KU, Wendt KU (2005) Structural basis for the highly selective inhibition of MMP-13. Chem Biol 12:181–189

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Catalan C, Bode W, Huber R, Turk D, Calvete JJ, Lichte A, Tschesche H, Maskos K (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J 17:5238–5248

    Article  PubMed  CAS  Google Scholar 

  • Foley LH, Palermo R, Dunten P, Wang P (2001) Novel 5,5-disubstituted pyrimidine-2,4,6-triones as selective MMP inhibitors. Bioorg Med Chem Lett 11:969–972

    Article  PubMed  CAS  Google Scholar 

  • Freeman-Cook KD, Reiter LA, Noe MC, Antipas AS, Danley DE, Datta K, Downs JT, Eisenbeis S et al (2007) Potent, selective spiropyrrolidine pyrimidinetrione inhibitors of MMP-13. Bioorg Med Chem Lett 17:6529–6534

    Article  PubMed  CAS  Google Scholar 

  • Gall A-L, Ruff M, Kannan R, Cuniase P, Yiotakis A, Dive V, Rio C-M, Basset P, Moras D (2001) Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition state. J Mol Biol 307:577–586

    Article  PubMed  CAS  Google Scholar 

  • Ganea E, Trifan M, Laslo AC, Putina G, Cristescu C (2007) Matrix metalloproteinases: useful and deleterious. Biochem Soc Trans 35:689–691

    Article  PubMed  CAS  Google Scholar 

  • Gomez DE, Alonso DF, Yoshiji H, Thoegeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74:111–122

    PubMed  CAS  Google Scholar 

  • Gomis-Ruth FX (2003) Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol 24:157–202

    Article  PubMed  CAS  Google Scholar 

  • Gomis-Ruth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, Yoshida N, Nagase H, Brew K, Bourenkov GP, Bartunik H, Bode W (1997) Mechanism of inhibition of the human MMP stromelysin-1 by TIMP-1. Nature 389:77–81

    Article  PubMed  CAS  Google Scholar 

  • Gooley PR, O’Connell JF, Marcy AI, Cuca GC, Salowe SP, Bush BL, Hermes JD, Esser CK, Hagmann WK, Springer JP, Johnson BA (1994) The NMR structure of the inhibited catalytic domain of human stromelysin-1. Nat Struct Biol 1:111–118

    Article  PubMed  CAS  Google Scholar 

  • Grams F, Crimmin M, Hinnes L, Huxley P, Pieper M, Tschesche H, Bode W (1995a) Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry 34:14012–14020

    Article  PubMed  CAS  Google Scholar 

  • Grams F, Reinemer P, Powers JC, Kleine T, Pieper M, Tschesche H, Huber R, Bode W (1995b) X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur J Biochem 228:830–841

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA 48:1014–1022

    Article  PubMed  CAS  Google Scholar 

  • Gupta SP (2007) Quantitative structure-activity relationship studies dies on zinc-containing metalloproteinase inhibitors. Chem Rev 107:3042–3087

    Article  PubMed  CAS  Google Scholar 

  • Hangauer DG, Monzingo AF, Matthews BW (1984) An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry 23:5730–5741

    Article  PubMed  CAS  Google Scholar 

  • Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354:1–6

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen EJ, Mitchell MA, Hendges SK, Belonga KL, Skaletzky LL, Stelzer LS, Lindberg TJ, Fritzen EL, Schostarez HJ, O’Sullivan TJ et al. (1999) Synthesis of a series of stromelysin-selective thiadiazole urea matrix metalloproteinase inhibitors. J Med Chem 42:1525–1536

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen JA, Jourden JLM, Miller MT, Cohen SM (2010) To bind zinc or not to bind zinc: An examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta 1803:72–94

    Article  PubMed  CAS  Google Scholar 

  • Johnson AR, Pavlovsky AG, Ortwine DF, Prior F, Man CF, Bornemeier DA, Banotai CA, Mueller WT, McConnell K, Guzman R, Han HK, Dyer RD (2007) Discovery and characterization of a novel inhibitor of matrix metalloproteinase-13 that reduces cartilage damage in vivo without joint fibroplasias side effects. J Biol Chem 282:27781–27791

    Article  PubMed  CAS  Google Scholar 

  • Kester WR, Matthews BW (1977) Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. Biochemistry 16:2506–2516

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Pudzianoeski AT, Leavitt KJ, Barbosa J, McDonnell PA, Metzler WJ, Rankin BM, Liu R, Vaccaro W, Pitts W (2005) Structure based design of potent and selective inhibitors of collagenase-3 (MMP-13). Bioorg Med Chem Lett 15:1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Li JJ, Nahra J, Johnson AR, Bunker A, O’Brien P, Yue WS, Ortwine DF, Man CF, Baragi V, Kilgore K, Dyer RD, Han HK (2008) Quinazolinones and pyrido[3,4-d]pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. J Med Chem 51:835–841

    Article  PubMed  Google Scholar 

  • Li NG, Shi ZH, Tang YP, Duan JA (2009) Selective matrix metalloproteinase inhibitors for cancer. Curr Med Chem 16:3805–3827

    Article  CAS  Google Scholar 

  • Lopez-Otin C, Overall CM (2002) Protease degradomics, a new challenge for proteomics. Nat Rev Mol Cell Boil 3:509–519

    Article  CAS  Google Scholar 

  • Lovejoy B, Cleasby A, Hassell AM, Longley K, Luther MA, Weigl D, McGeehan G, McElory AB, Drewry D, Lanbert MH, Jordan SR (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263:375–377

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy B, Welch AR, Carr S, Luong C, Broka C, Hendricks RT, Campbell JA, Walker KAM, Martin R, Van Wart H, Browner MF (1999) Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors. Nat Struct Biol 6:217–221

    Article  PubMed  CAS  Google Scholar 

  • March J (1985) Advanced organic chemistry-reactions, mechanisms and structure, 3rd edn. Wiley, New York

    Google Scholar 

  • Matter H, Schudok M (2004) Recent advances in the design of matrix metalloproteinases inhibitors. Curr Opin Drug Discov Devel 7:513–595

    PubMed  CAS  Google Scholar 

  • Matziari M, Beau F, Cuniasse P, Dive V, Yiotakis A (2004) Evaluation of P1′-diversified phosphinic peptides leads to the development of highly selective inhibitors of MMP-11. J Med Chem 47:325–336

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, Geogpegan KF, Hambor JE (1996) Cloning, expression, and type II collagenolytic activity of MMP-13 from human osteoarthritic cartilage. J Clin Invest 97:761–768

    Article  PubMed  CAS  Google Scholar 

  • Morales R, Perrier S, Florent JM, Beltra J, Dufour S, De Mendez I, Manceau P, Tertre A, Moreau F, Compere D, Dublanchet AC, O-Gara M (2004) Crystal structures of novel non-peptidic, non-zinc chelating inhibitors bound to MMP-12. J Mol Biol 341:1063–1076

    Article  PubMed  CAS  Google Scholar 

  • Murphy G, Gavrilovic J (1999) Proteolysis and cell migration: creating a path? Curr Opin Cell Biol 11:614–621

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Das SK, Dey SK, Fowlkes JL, Huang W, Brew K (1997) Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Physiological roles and structural basis of MMP inhibition by TIMP-1. In: Hawkes SP, Edwards DR, Khokha R (eds) Tissue inhibitors of metalloproteinases in development and disease. Harwood, Lausanne, pp 3–10

    Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  PubMed  CAS  Google Scholar 

  • Nar H, Werle K, Bauer MMT, Dollinger H, Jung B (2001) Crystal structure of human macrophage elastase (MMP-12) in complex with a hydroxamic acid inhibitor. J Mol Biol 312:743–751

    Article  PubMed  CAS  Google Scholar 

  • Netzel-Arnett S, Fields G, Birkedal-Hansen H, Van Wart HE (1991) Sequence specificities of human fibroblast and neutrophil collagenase. J Biol Chem 266:6747–6755

    PubMed  CAS  Google Scholar 

  • Netzel-Arnett S, Sang QX, Moore WGI, Narve M, Birkedal-Hansen H, Van Wart HE (1993) Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry 32:6427–6432

    Article  PubMed  CAS  Google Scholar 

  • Neurath H, Walsh KA (1976) Role of proteolytic enzymes in biological regulation. Proc Natl Acad Sci USA 73:3825–3832

    Article  PubMed  CAS  Google Scholar 

  • Niedzwiecki L, Teahan J, Harrison RK, Stein RL (1992) Substrate specificity of the human matrix metalloproteinase stromelysin and the development of continuous fluorometric assays. Biochemistry 31:12618–12623

    Article  PubMed  CAS  Google Scholar 

  • Overall CM, Kleifeld O (2006) Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br J Cancer 94:941–946

    Article  PubMed  CAS  Google Scholar 

  • Park HI, Ni J, Gerkema FE, Liu D, Belozerov VE, Sang QX (2000) Identification and characterization of human endometase (MMP-26) from endometrial tumor. J Biol Chem 275:20540–20544

    Article  PubMed  CAS  Google Scholar 

  • Park HI, Jin Y, Hurst DR, Monroe CA, Lee S, Schwartz MA, Sang QX (2003) The intermediate S1′ pocket of the endometase/matrilysin-2 active site revealed by enzyme inhibition kinetic studies, protein sequence analyses, and homology modeling. J Biol Chem 278:51646–51653

    Article  PubMed  CAS  Google Scholar 

  • Pikul S, Dunham KM, Almstead NG, De B, Natchus MG, Taiwo YO, Williams LE, Hynd BA, Hsieh LC, Janusz MJ, Gu F, Mieling GE (2001) Heterocycle-based MMP inhibitors with P2′ substituents. Bioorg Med Chem Lett 11:1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Pochetti G, Montanari R, Gege C, Chevrier C, Taveras AG, Mazza F (2009) Extra binding region induced by non-zinc chelating inhibitors into the S1′ subsite of matrix metalloproteinase 8 (MMP-8). J Med Chem 52:1040–1049

    Article  PubMed  CAS  Google Scholar 

  • Puerta DT, Lewis JA, Cohen SM (2004) New beginnings for matrix metalloproteinase inhibitors: Identification of high affinity zinc-binding groups. J Am Chem Soc 126:8388–8389

    Article  PubMed  CAS  Google Scholar 

  • Reiter LA, Freeman-Cook KD, Jones CS, Martinelli GJ, Antipas AS, Berliner MA, Datta K, Downs JT, Eskra JD, Forman MD, Greer EM, Guzman R, Hardink JR, Janat F, Keene NF, Laird ER, Liras JL, Lopresti-Morrow LL, Mitchell PG, Pandit J, Robertson D, Sperger D, Vaughn-Bowser ML, Waller DM, Yocum SA (2006) Potent, selective pyrimidinetrione-based inhibitors of MMP-13. Bioorg Med Chem Lett 16:5822–5826

    Article  PubMed  CAS  Google Scholar 

  • Roeb E, Schleinhofer K, Kernebeck T, Potsch S, Jansen B, Behrmann I, Matern S, Grotzinger J (2002) The matrix metalloproteinase 9 (MMP-9) hemopexin domain is a novel gelatin binding domain and acts as an antagonist. Biol Chem 277:50326–50332

    Article  CAS  Google Scholar 

  • Rowsell S, Hawtin P, Minshull CA, Jepson H, Brockbank SMV, Barratt DG, Slater AM, McPheat WL, Waterson D, Henney AM, Pauptit RA (2002) Crystal structures of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol 319:173–181

    Article  PubMed  CAS  Google Scholar 

  • Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  PubMed  CAS  Google Scholar 

  • Schroeder J, Henke A, Wenzel H, Brandsteller H, Stammler HG, Stammler A, Pfeiffer WD, Tschesche H (2001) Structure-based design and synthesis of potent matrix metalloproteinase inhibitors derived from a 6H-1,3,4-thiadiazine scaffold. J Med Chem 44:3231–3243

    Article  CAS  Google Scholar 

  • Skiles JW, Gonnella NC, Jeng AY (2001) The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr Med Chem 8:425–474

    PubMed  CAS  Google Scholar 

  • Skiles JW, Gonnella NC, Jeng AY (2004) The design, structure, and clinical update of small molecular weight MMPIs. Curr Med Chem 11:2911–2977

    PubMed  CAS  Google Scholar 

  • Solomon A, Akabayov B, Frenkel A, Milla ME, Sagi I (2007) Key feature of the catalytic cycle of TNF-α converting enzyme involves communication between distal protein sites and the enzyme catalytic core. Proc Natl Acad Sci USA 104:4931–4936

    Article  PubMed  CAS  Google Scholar 

  • Stams T, Spurlino JC, Smith DL, Wahl RC, Ho TF, Qoronfleh MW, Banks TM, Rubin B (1994) Structure of human neutrophil collagenase reveals large S1′ specificity pocket. Nat Struct Biol 1:119–123

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Ann Rev Cell Dev Biol 17:463–516

    Article  CAS  Google Scholar 

  • Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H (1990) Mechanism of activation of tissue procollagenase by MMP 3 (stromelysin). Biochemistry 29:10261–10270

    Article  PubMed  CAS  Google Scholar 

  • Tallant C, Marrero A, Gomis-Ruth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta 1803:20–28

    Article  PubMed  CAS  Google Scholar 

  • Terp GE, Cruciani G, Christensen IT, Jorgensen FS (2002) Structural differences of MMPs with potential implications for inhibitor selectivity examined by GRID/CPCA approach. J Med Chem 45:2675–2684

    Article  PubMed  CAS  Google Scholar 

  • Tochowicz A, Maskos K, Huber R, Oltenfreiter R, Dive V, Yiotakis A, Zanda M, Bode W, Goettig P (2007) Crystal structures of MMP-9 complexes with five inhibitors: contribution of the flexible Arg424 side-chain to selectivity. J Mol Biol 371:989–1006

    Article  PubMed  CAS  Google Scholar 

  • Uria JA, Lopez-Otin C (2000) Matrilysin-2, a new MMP expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res 60:4745–4751

    PubMed  CAS  Google Scholar 

  • Waller CL, Marshall GR (1993) Three-dimensional quantitative structure-activity relationship of angiotensin-converting enzyme and thermolysin inhibitors. II. A comparison of CoMFA models incorporating molecular orbital fields and desolvation free energies based on active-analog and complementary-receptor-field alignment rules. J Med Chem 36:2390–2403

    Article  PubMed  CAS  Google Scholar 

  • Welch AR, Holman CM, Huber M, Brenner MC, Browner MF, Van Wart HE (1996) Understanding the P1′ specificity of the matrix metalloproteinases: effect of S1′ pocket mutations in matrilysin and stromelysin-1. Biochemistry 35:10103–10109

    Article  PubMed  CAS  Google Scholar 

  • Whitlock GA, Dack KN, Dickinson RP, Lewis ML (2007) A novel series of highly selective inhibitors of MMP-3. Bioorg Med Chem Lett 17:6750–6753

    Article  PubMed  CAS  Google Scholar 

  • Whittaker M, Floyd CD, Brown P, Gearing AJ (1999) Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 99:2735–2776

    Article  PubMed  CAS  Google Scholar 

  • Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2155

    PubMed  CAS  Google Scholar 

  • Woessner JF (1998) The matrix metalloproteinase family. In: Parks WC, Mecham RP (eds) Matrix metalloproteinases. Academic, San Diego, CA, pp 1–13

    Google Scholar 

  • Wyvratt MJ, Patchett AA (1985) Recent developments in the design of angiotensin-converting enzyme inhibitors. Med Res Rev 5:483–531

    Google Scholar 

  • Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR (1998) MMP and diseases of the CNS. Trends Neurosci 21:75–80

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Gupta, S.P., Patil, V.M. (2012). Specificity of Binding with Matrix Metalloproteinases. In: Gupta, S. (eds) Matrix Metalloproteinase Inhibitors. Experientia Supplementum, vol 103. Springer, Basel. https://doi.org/10.1007/978-3-0348-0364-9_2

Download citation

Publish with us

Policies and ethics