Skip to main content

Computing Linear Matrix Representations of Helton-Vinnikov Curves

  • Chapter
  • First Online:
Mathematical Methods in Systems, Optimization, and Control

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 222))

Abstract

Helton and Vinnikov showed that every rigidly convex curve in the real plane bounds a spectrahedron. This leads to the computational problem of explicitly producing a symmetric (positive definite) linear determinantal representation for a given curve. We study three approaches to this problem: an algebraic approach via solving polynomial equations, a geometric approach via contact curves, and an analytic approach via theta functions. These are explained, compared, and tested experimentally for low degree instances.

Mathematics Subject Classification. Primary: 14Q05; secondary: 14K25.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Artebani and I. Dolgachev: The Hesse pencil of a plane cubic curve. Enseign. Math. 55, 235-273, 2009.

    MathSciNet  MATH  Google Scholar 

  2. J.A. Ball and V. Vinnikov: Zero-pole interpolation for matrix meromorphic functions on a compact Riemann surface and a matrix Fay trisecant identity. Amer. J. Math., 121 (4), 841–888, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Beauville: Determinantal hypersurfaces. Michigan Math. Journal, 48, 39–64, 2000.

    MathSciNet  MATH  Google Scholar 

  4. D. Bates, J. Hauenstein, A. Sommese, and C. Wampler: bertini: Software for Numerical Algebraic Geometry, http://www.nd.edu/%7Esommese/bertini/, (2010).

  5. A. Cayley: Algorithm for the characteristics of the triple ϑ-functions. Journal für die reine und angewandte Mathematik, 87, 165–169, 1879.

    MATH  Google Scholar 

  6. W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann: Singular: A computer algebra system for polynomial computations, www.singular.uni-kl.de (2010).

  7. B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and M. Schmies: Computing Riemann theta functions. Mathematics of Computation, 73 (247), 1417–1442, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Deconinck and M.S. Patterson: Computing the Abel map. Physica D, 237 (24), 3214–3232, 2008.

    MathSciNet  MATH  Google Scholar 

  9. B. Deconinck and M. van Hoeij: Computing Riemann matrices of algebraic curves. Physica D, 152/153, 28–46, 2001.

    Google Scholar 

  10. A.C. Dixon: Note on the reduction of a ternary quantic to a symmetrical determinant. Cambr. Proc. 11, 350–351, 1902.

    Google Scholar 

  11. I. Dolgachev: Classical Algebraic Geometry: A Modern View, Cambridge University Press, 2012.

    Google Scholar 

  12. B. Dubrovin, R. Flickinger and H. Segur: Three-phase solutions of the KadomtsevPetviashvili equation. Stud. Appl. Math. 99 (1997) 137–203.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Greub: Linear Algebra. Springer-Verlag, New York, 4th edn., 1975. Graduate Texts in Math., No 23.

    Google Scholar 

  14. B.H. Gross and J. Harris: Real algebraic curves. Ann. Sci. École Norm. Sup. (4), 14 (2), 157–182, 1981.

    Google Scholar 

  15. J. Guardia: On the Torelli problem and Jacobian Nullwerte in genus three, Michigan Mathematical Journal 60, 51–65, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.W. Helton and V. Vinnikov: Linear matrix inequality representation of sets. Comm. Pure Appl. Math., 60 (5), 654–674, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Hulek: Elementary Algebraic Geometry, Student Mathematical Library, Vol. 20, American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  18. A. Lewis, P. Parrilo and M. Ramana: The Lax conjecture is true. Proceedings Amer. Math. Soc., 133, 2495-2499, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Meyer-Brandis. Berührungssysteme und symmetrische Darstellungen ebener Kurven, 1998. Diplomarbeit, Universitat Mainz, written under the supervision of D. van Straten, posted at http://enriques.mathematik.uni-mainz.de/straten/diploms

  20. D. Mumford: Tata Lectures on Theta. I. Modern Birkhäuser Classics. Birkhäuser, Boston, MA, 2007. Reprint of the 1983 edition.

    Google Scholar 

  21. D. Plaumann, B. Sturmfels and C. Vinzant: Quartic curves and their bitangents, Journal of Symbolic Computation 46, 712-733, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Speyer: Horn’s problem, Vinnikov curves, and the hive cone. Duke Math. J. 127 (2005), no. 3, 395-427.

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Vinnikov: Complete description of determinantal representations of smooth irreducible curves. Linear Algebra Appl., 125, 103-140, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Vinnikov: Selfadjoint determinantal representations of real plane curves. Mathematische Annalen, 296 (3), 453-479, 1993.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Plaumann .

Editor information

Editors and Affiliations

Additional information

Dedicated to Bill Helton on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Plaumann, D., Sturmfels, B., Vinzant, C. (2012). Computing Linear Matrix Representations of Helton-Vinnikov Curves. In: Dym, H., de Oliveira, M., Putinar, M. (eds) Mathematical Methods in Systems, Optimization, and Control. Operator Theory: Advances and Applications, vol 222. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0411-0_19

Download citation

Publish with us

Policies and ethics