Skip to main content

Antimicrobial Peptides in Chronic Obstructive Pulmonary Disease

  • Chapter
  • First Online:
Antimicrobial Peptides and Innate Immunity

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1913 Accesses

Abstract

Chronic obstructive pulmonary disease (COPD) is a frequent, chronic lung disease associated with significant morbidity and mortality. Respiratory infections play a central role in the disease, not only during exacerbations but also in the stable phase of the disease. These infections contribute to the development and progression of the disease, and many patients are colonized by respiratory pathogens. The pathogens are present in the lung, despite the presence of large numbers of neutrophils, especially during acute states of inflammation. These neutrophils may release antimicrobial peptides (AMPs) that may not only serve to kill these pathogens but also contribute to tissue injury and inflammation. In addition, smoke affects many elements of the host immune system, including the expression of epithelial AMPs. Furthermore, the activity of AMPs may be decreased in the purulent airway secretions often present in COPD patients. Possibly vitamin D treatment may contribute to restoring local AMP deficiency and thereby to reducing exacerbations in COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarbiou J, Ertmann M, van Wetering S, van Noort P, Rook D, Rabe KF, Litvinov SV, van Krieken JH, De Boer WI, Hiemstra PS (2002) Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J Leukoc Biol 72:167–174

    PubMed  CAS  Google Scholar 

  • Aarbiou J, Van Schadewijk A, Stolk J, Sont JK, De Boer WI, Rabe KF, van Krieken JH, Mauad T, Hiemstra PS (2004a) Human neutrophil defensins and secretory leukocyte proteinase inhibitor in squamous metaplastic epithelium of bronchial airways. Inflamm Res 53:230–238

    Article  PubMed  CAS  Google Scholar 

  • Aarbiou J, Verhoosel RM, van Wetering S, de Boer WI, van Krieken JH, Litvinov SV, Rabe KF, Hiemstra PS (2004b) Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro. Am J Respir Cell Mol Biol 30:193–201

    Article  PubMed  CAS  Google Scholar 

  • Andresen E, Gunther G, Bullwinkel J, Lange C, Heine H (2011) Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS One 6:e21898

    Article  PubMed  CAS  Google Scholar 

  • Bals R, Hiemstra PS (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23:327–333

    Article  PubMed  CAS  Google Scholar 

  • Bals R, Hiemstra PS (2006) Antimicrobial peptides in COPD–basic biology and therapeutic applications. Curr Drug Targets 7:743–750

    Article  PubMed  CAS  Google Scholar 

  • Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM (1999) Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 67:6084–6089

    PubMed  CAS  Google Scholar 

  • Bandi V, Apicella MA, Mason E, Murphy TF, Siddiqi A, Atmar RL, Greenberg SB (2001) Nontypeable Haemophilus influenzae in the lower respiratory tract of patients with chronic bronchitis. Am J Respir Crit Care Med 164:2114–2119

    PubMed  CAS  Google Scholar 

  • Baranska-Rybak W, Sonesson A, Nowicki R, Schmidtchen A (2006) Glycosaminoglycans inhibit the antibacterial activity of LL-37 in biological fluids. J Antimicrob Chemother 57:260–265

    Article  PubMed  CAS  Google Scholar 

  • Bergsson G, Reeves EP, McNally P, Chotirmall SH, Greene CM, Greally P, Murphy P, O’Neill SJ, McElvaney NG (2009) LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline. J Immunol 183:543–551

    Article  PubMed  CAS  Google Scholar 

  • Bouloukaki I, Tsiligianni IG, Tsoumakidou M, Mitrouska I, Prokopakis EP, Mavroudi I, Siafakas NM, Tzanakis N (2011) Sputum and nasal lavage lung-specific biomarkers before and after smoking cessation. BMC Pulm Med 11(35):35

    Article  PubMed  Google Scholar 

  • Bresser P, Out TA, van Alphen L, Jansen HM, Lutter R (2000) Airway inflammation in nonobstructive and obstructive chronic bronchitis with chronic haemophilus influenzae airway infection. Comparison with noninfected patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162:947–952

    PubMed  CAS  Google Scholar 

  • Bucki R, Namiot DB, Namiot Z, Savage PB, Janmey PA (2008) Salivary mucins inhibit antibacterial activity of the cathelicidin-derived LL-37 peptide but not the cationic steroid CSA-13. J Antimicrob Chemother 62:329–335

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318

    Article  PubMed  CAS  Google Scholar 

  • Decramer M, Janssens W, Miravitlles M (2012) Chronic obstructive pulmonary disease. Lancet 379(9823):1341–1351

    Google Scholar 

  • Dork T, Stuhrmann M (1998) Polymorphisms of the human beta-defensin-1 gene. Mol Cell Probes 12:171–173

    Article  PubMed  CAS  Google Scholar 

  • Ekeowa UI, Marciniak SJ, Lomas DA (2011) Alpha(1)-antitrypsin deficiency and inflammation. Expert Rev Clin Immunol 7:243–252

    Article  PubMed  CAS  Google Scholar 

  • Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, Martinez FJ, Huffnagle GB (2011) Analysis of the lung microbiome in the “healthy”smoker and in COPD. PLoS One 6:e16384

    Article  PubMed  CAS  Google Scholar 

  • Felgentreff K, Beisswenger C, Griese M, Gulder T, Bringmann G, Bals R (2006) The antimicrobial peptide cathelicidin interacts with airway mucus. Peptides 27:3100–3106

    Article  PubMed  CAS  Google Scholar 

  • Golec M, Reichel C, Mackiewicz B, Skorska C, Curzytek K, Lemieszek M, Dutkiewicz J, Gora A, Ziesche R, Boltuc J, Sodolska K, Milanowski J, Spiewak R (2009) Cathelicidin LL-37, granzymes, TGF-beta1 and cytokines levels in induced sputum from farmers with and without COPD. Ann Agric Environ Med 16:289–297

    PubMed  CAS  Google Scholar 

  • Gorter AD, Eijk PP, van Wetering S, Hiemstra PS, Dankert J, van Alphen L (1998) Stimulation of the adherence of Haemophilus influenzae to human lung epithelial cells by antimicrobial neutrophil defensins. J Infect Dis 178:1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Gorter AD, Hiemstra PS, de Bentzmann S, van Wetering S, Dankert J, van Alphen L (2000) Stimulation of bacterial adherence by neutrophil defensins varies among bacterial species but not among host cell types. FEMS Immunol Med Microbiol 28:105–111

    Article  PubMed  CAS  Google Scholar 

  • Grashoff WFH, Sont JK, Sterk PJ, Hiemstra PS, De Boer WI, Stolk J, van Krieken JHJM (1997) Chronic obstructive pulmonary disease. The role of bronchiolar mast cells and macrophages. Am J Pathol 151:1785–1790

    PubMed  CAS  Google Scholar 

  • Herasimenka Y, Benincasa M, Mattiuzzo M, Cescutti P, Gennaro R, Rizzo R (2005) Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens. Peptides 26:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Herr C, Beisswenger C, Hess C, Kandler K, Suttorp N, Welte T, Schroeder JM, Vogelmeier C; R Bals for the CAPNETZ Study Group (2009) Suppression of pulmonary innate host defence in smokers. Thorax 64(2):144–149

    Article  PubMed  CAS  Google Scholar 

  • Hersh CP, DeMeo DL, Raby BA, Litonjua AA, Sylvia JS, Sparrow D, Reilly JJ, Silverman EK (2006) Genetic linkage and association analysis of COPD-related traits on chromosome 8p. COPD 3:189–194

    Article  PubMed  Google Scholar 

  • Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF, Cookson WO (2010) Disordered microbial communities in asthmatic airways. PLoS One 5:e8578

    Article  PubMed  CAS  Google Scholar 

  • Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653

    Article  PubMed  CAS  Google Scholar 

  • Hollox EJ (2008) Copy number variation of beta-defensins and relevance to disease. Cytogenet Genome Res 123:148–155

    Article  PubMed  CAS  Google Scholar 

  • Hu RC, Xu YJ, Zhang ZX, Ni W, Chen SX (2004) Correlation of HDEFB1 polymorphism and susceptibility to chronic obstructive pulmonary disease in Chinese Han population. Chin Med J (Engl) 117:1637–1641

    CAS  Google Scholar 

  • Hughes DA (2009) Vitamin D and respiratory health. Clin Exp Immunol 158:20–25

    Article  PubMed  CAS  Google Scholar 

  • Ishimoto H, Mukae H, Sakamoto N, Amenomori M, Kitazaki T, Imamura Y, Fujita H, Ishii H, Nakayama S, Yanagihara K, Kohno S (2009) Different effects of telithromycin on MUC5AC production induced by human neutrophil peptide-1 or lipopolysaccharide in NCI-H292 cells compared with azithromycin and clarithromycin. J Antimicrob Chemother 63:109–114

    Article  PubMed  CAS  Google Scholar 

  • Janssens W, Bouillon R, Claes B, Carremans C, Lehouck A, Buysschaert I, Coolen J, Mathieu C, Decramer M, Lambrechts D (2010a) Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax 65:215–220

    Article  PubMed  Google Scholar 

  • Janssens W, Nuytten H, Dupont LJ, Van Eldere J, Vermeire S, Lambrechts D, Nackaerts K, Decramer M, Cassiman JJ, Cuppens H (2010b) Genomic copy number determines functional expression of {beta}-defensin 2 in airway epithelial cells and associates with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182:163–169

    Article  PubMed  CAS  Google Scholar 

  • Kilsgard O, Andersson P, Malmsten M, Nordin SL, Linge HM, Eliasson M, Sorenson E, Erjefalt JS, Bylund J, Olin AI, Sorensen OE, Egesten A (2012) Peptidylarginine deiminases present in the airways during tobacco smoking and inflammation can citrullinate the host defense peptide LL-37, resulting in altered activities. Am J Respir Cell Mol Biol 46:240–248

    Article  PubMed  CAS  Google Scholar 

  • Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu YJ, Gilliet M (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3:73ra19

    Article  PubMed  Google Scholar 

  • Lee HY, Andalibi A, Webster P, Moon SK, Teufert K, Kang SH, Li JD, Nagura M, Ganz T, Lim DJ (2004) Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable Haemophilus influenzae. BMC Infect Dis 4(12):12

    Article  PubMed  Google Scholar 

  • Lee WK, Ramanathan M Jr, Spannhake EW, Lane AP (2007) The cigarette smoke component acrolein inhibits expression of the innate immune components IL-8 and human beta-defensin 2 by sinonasal epithelial cells. Am J Rhinol 21:658–663

    Article  PubMed  Google Scholar 

  • Lehouck A, Mathieu C, Carremans C, Baeke F, Verhaegen J, Van Eldere J, Decallonne B, Bouillon R, Decramer M, Janssens W (2012) High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med 156:105–114

    PubMed  Google Scholar 

  • Makrygiannakis D, Hermansson M, Ulfgren AK, Nicholas AP, Zendman AJ, Eklund A, Grunewald J, Skold CM, Klareskog L, Catrina AI (2008) Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann Rheum Dis 67:1488–1492

    Article  PubMed  CAS  Google Scholar 

  • Matsushita I, Hasegawa K, Nakata K, Yasuda K, Tokunaga K, Keicho N (2002) Genetic variants of human beta-defensin-1 and chronic obstructive pulmonary disease. Biochem Biophys Res Commun 291:17–22

    Article  PubMed  CAS  Google Scholar 

  • McGuckin MA, Linden SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–278

    Article  PubMed  CAS  Google Scholar 

  • Merkel D, Rist W, Seither P, Weith A, Lenter MC (2005) Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification. Proteomics 5:2972–2980

    Article  PubMed  CAS  Google Scholar 

  • Moser C, Weiner DJ, Lysenko E, Bals R, Weiser JN, Wilson JM (2002) beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 70:3068–3072

    Article  PubMed  CAS  Google Scholar 

  • Nunez B, Sauleda J, Anto JM, Julia MR, Orozco M, Monso E, Noguera A, Gomez FP, Garcia-Aymerich J, Agusti A (2011) Anti-tissue antibodies are related to lung function in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 183:1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA, Hancock REW (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182

    Article  PubMed  CAS  Google Scholar 

  • Pace E, Giarratano A, Ferraro M, Bruno A, Siena L, Mangione S, Johnson M, Gjomarkaj M (2011) TLR4 upregulation underpins airway neutrophilia in smokers with chronic obstructive pulmonary disease and acute respiratory failure. Hum Immunol 72:54–62

    Article  PubMed  CAS  Google Scholar 

  • Pace E, Ferraro M, Minervini MI, Vitulo P, Pipitone L, Chiappara G, Siena L, Montalbano AM, Johnson M, Gjomarkaj M (2012) Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients. PLoS One 7:e33601

    Article  PubMed  CAS  Google Scholar 

  • Paone G, Wada A, Stevens LA, Matin A, Hirayama T, Levine RL, Moss J (2002) ADP ribosylation of human neutrophil peptide-1 regulates its biological properties. Proc Natl Acad Sci USA 99:8231–8235

    Article  PubMed  CAS  Google Scholar 

  • Paone G, Stevens LA, Levine RL, Bourgeois C, Steagall WK, Gochuico BR, Moss J (2006) ADP-ribosyltransferase-specific modification of human neutrophil peptide-1. J Biol Chem 281:17054–17060

    Article  PubMed  CAS  Google Scholar 

  • Paone G, Conti V, Vestri A, Leone A, Puglisi G, Benassi F, Brunetti G, Schmid G, Cammarella I, Terzano C (2011) Analysis of sputum markers in the evaluation of lung inflammation and functional impairment in symptomatic smokers and COPD patients. Dis Markers 31:91–100

    PubMed  CAS  Google Scholar 

  • Parameswaran GI, Sethi S, Murphy TF (2011) Effects of bacterial infection on airway antimicrobial peptides and proteins in chronic obstructive pulmonary disease. Chest 140(3):611–617

    Article  PubMed  CAS  Google Scholar 

  • Quint JK, Wedzicha JA (2007) The neutrophil in chronic obstructive pulmonary disease. J Allergy Clin Immunol 119:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van WC, Zielinski J (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555

    Article  PubMed  Google Scholar 

  • Sakamoto N, Mukae H, Fujii T, Ishii H, Yoshioka S, Kakugawa T, Sugiyama K, Mizuta Y, Kadota J, Nakazato M, Kohno S (2005) Differential effects of alpha- and beta-defensin on cytokine production by cultured human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 288:L508–L513

    Article  PubMed  CAS  Google Scholar 

  • Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46:157–168

    Article  PubMed  CAS  Google Scholar 

  • Sethi S (2010) Infection as a comorbidity of COPD. Eur Respir J 35:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Sethi S, Murphy TF (2001) Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 14:336–363

    Article  PubMed  CAS  Google Scholar 

  • Sethi S, Mallia P, Johnston SL (2009) New paradigms in the pathogenesis of chronic obstructive pulmonary disease II. Proc AmThorac Soc 6:532–534

    Article  CAS  Google Scholar 

  • Shaykhiev R, Beisswenger C, Kaendler K, Senske J, Puechner A, Damm T, Behr J, Bals R (2005) The human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol 289(5):L842–L848

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y, Abe S, Inoue S, Takabatake N, Igarashi A, Takeishi Y, Sata M, Kubota I (2008) Altered expression of antimicrobial molecules in cigarette smoke-exposed emphysematous mice lungs. Respirology 13:1061–1065

    PubMed  Google Scholar 

  • Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway BA, Greenberg EP, Valore EV, Welsh MJ, Ganz T, Tack BF, McCray PBJ (1998) Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci USA 95:14961–14966

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    Article  PubMed  CAS  Google Scholar 

  • Spencer LT, Paone G, Krein PM, Rouhani FN, Rivera-Nieves J, Brantly ML (2004) Role of human neutrophil peptides in lung inflammation associated with alpha1-antitrypsin deficiency. Am J Physiol Lung Cell Mol Physiol 286:L514–L520

    Article  PubMed  CAS  Google Scholar 

  • Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV, Cooper J, Sin DD, Mohn WW, HOGG JC (2012) The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185:1073–1080

    Article  PubMed  Google Scholar 

  • Taggart CC, Greene CM, Smith SG, Levine RL, McCray PB Jr, O’Neill S, McElvaney NG (2003) Inactivation of human {beta}-defensins 2 and 3 by elastolytic cathepsins. J Immunol 171:931–937

    PubMed  CAS  Google Scholar 

  • Terracciano R, Preiano M, Palladino GP, Carpagnano GE, Barbaro MP, Pelaia G, Savino R, Maselli R (2011) Peptidome profiling of induced sputum by mesoporous silica beads and MALDI-TOF MS for non-invasive biomarker discovery of chronic inflammatory lung diseases. Proteomics 11:3402–3414

    Article  PubMed  CAS  Google Scholar 

  • Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sorensen OE, Borregaard N, Rabe KF, Hiemstra PS (2003) The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 171:6690–6696

    PubMed  CAS  Google Scholar 

  • Tsoumakidou M, Bouloukaki I, Thimaki K, Tzanakis N, Siafakas NM (2010) Innate immunity proteins in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Exp Lung Res 36:373–380

    Article  PubMed  CAS  Google Scholar 

  • van der Does AM, Beekhuizen H, Ravensbergen B, Vos T, Ottenhoff THM, van Dissel JT, Drijfhout JW, Hiemstra PS, Nibbering PH (2010) LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature. J Immunol 185:1442–1449

    Article  PubMed  CAS  Google Scholar 

  • van Schilfgaarde M, Eijk P, Regelink A, van Ulsen P, Everts V, Dankert J, van Alphen L (1999) Haemophilus influenzae localized in epithelial cell layers is shielded from antibiotics and antibody-mediated bactericidal activity. Microb Pathog 26:249–262

    Article  PubMed  Google Scholar 

  • Van Wetering S, Mannesse-Lazeroms SPG, Dijkman JH, Hiemstra PS (1997a) Effect of neutrophil serine proteinases and defensins on lung epithelial cells. Modulation of cytotoxicity and IL-8 production. J Leukoc Biol 62:217–226

    PubMed  Google Scholar 

  • van Wetering S, Mannesse-Lazeroms SPG, Van Sterkenburg MAJA, Daha MR, Dijkman JH, Hiemstra PS (1997b) Effect of defensins on IL-8 synthesis in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 272:L888–L896

    Google Scholar 

  • van Wetering S, Mannesse-Lazeroms SPG, Van Sterkenburg MAJA, Hiemstra PS (2002) Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone. Inflamm Res 51:8–15

    Article  PubMed  Google Scholar 

  • Wallace AM, He JQ, Burkett KM, Ruan J, Connett JE, Anthonisen NR, Pare PD, Sandford AJ (2006) Contribution of alpha- and beta-defensins to lung function decline and infection in smokers: an association study. Respir Res 7:76

    Article  PubMed  CAS  Google Scholar 

  • Weiner DJ, Bucki R, Janmey PA (2003) The antimicrobial activity of the cathelicidin LL37 is inhibited by F-actin bundles and restored by gelsolin. Am J Respir Cell Mol Biol 28:738–745

    Article  PubMed  CAS  Google Scholar 

  • Weldon S, McNally P, McElvaney NG, Elborn JS, McAuley DF, Wartelle J, Belaaouaj A, Levine RL, Taggart CC (2009) Decreased levels of secretory leucoprotease inhibitor in the Pseudomonas-infected cystic fibrosis lung are due to neutrophil elastase degradation. J Immunol 183:8148–8156

    Article  PubMed  CAS  Google Scholar 

  • Wencker M, Brantly ML (2005) Cytotoxic concentrations of alpha-defensins in the lungs of individuals with alpha 1-antitrypsin deficiency and moderate to severe lung disease. Cytokine 32:1–6

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson TMA, Hurst JR, Perera WR, Wilks M, Donaldson GC, Wedzicha JA (2006) Effect of interactions between lower airway bacterial and rhinoviral infection in exacerbations of COPD. Chest 129:317–324

    Article  PubMed  Google Scholar 

  • Xiao W, Hsu YP, Ishizaka A, Kirikae T, Moss RB (2005) Sputum cathelicidin, urokinase plasminogen activation system components, and cytokines discriminate cystic fibrosis, COPD, and asthma inflammation. Chest 128:2316–2326

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utlizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2006) Fighting infections with vitamin D. Nat Med 12:388–390

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Case S, Bowler RP, Martin RJ, Jiang D, Chu HW (2011) Cigarette smoke modulates PGE(2) and host defence against Moraxella catarrhalis infection in human airway epithelial cells. Respirology 16:508–516

    Article  PubMed  Google Scholar 

  • Zuyderduyn S, Ninaber DK, Hiemstra PS, Rabe KF (2006) The antimicrobial peptide LL-37 enhances IL-8 release by human airway smooth muscle cells. J Allergy Clin Immunol 117:1328–1335

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gimano D. Amatngalim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel AG

About this chapter

Cite this chapter

Amatngalim, G.D., Hiemstra, P.S. (2013). Antimicrobial Peptides in Chronic Obstructive Pulmonary Disease. In: Hiemstra, P., Zaat, S. (eds) Antimicrobial Peptides and Innate Immunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0541-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0541-4_12

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0540-7

  • Online ISBN: 978-3-0348-0541-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics