Skip to main content

Biotin in vitro Translation: A Nonradioactive Method for the Synthesis of Biotin Labeled Proteins in a Cell-Free System

  • Chapter
A Laboratory Guide to Biotin-Labeling in Biomolecule Analysis

Part of the book series: BioMethods ((BIOMETHODS))

  • 180 Accesses

Summary

In vitro translation of mRNAs into proteins using, for example, reticulocyte lysates or wheat germ extracts is frequently applied to study the coding capacity of RNAs or cDNAs and the functional effects of mutations. Usually, a natural and purified RNA or an mRNA transcript synthesized from cloned cDNA in vitro with a phage RNA polymerase (SP6, T3, or 17) is added to an in vitro translation system in order to program the synthesis of the encoded protein. In vitro translation assays are traditionally monitored by following the incorporation of radiolabeled [35S]methionine into newly synthesized protein. We have optimized an alternative nonradioactive in vitro translation method that labels newly synthesized proteins with biotin. tRNALys is first aminoacylated with lysine. The lysine moiety is then chemically labeled with biotin at the E NH2-group. When biotin-lysine-tRNALys is added to translation systems, the biotinylated lysine is incorporated into the growing polypeptide chain. After electrophoresis and transfer of the translation products to PVDF or nitrocellulose membranes, the biotin-labeled proteins are detected with streptavidin coupled to horseradish peroxidase and a chemiluminescent reaction of the marker enzyme with luminol/iodophenol. The chemiluminescent signals are recorded by a 0.1 to 10-minute exposure of the blot to X-ray film. For the translation of viral and in vitro transcribed RNAs, this nonradioactive method yields equivalent results in comparison to the radioactive method. In addition, biotin-labeled translation products are biologically functional: biotinylated precursor proteins are transported and processed correctly by dog pancreas microsomes; transcription factors synthesized by biotin in vitro translation bind specifically to their DNA recognition sequences; and biotin-modified luciferase keeps its enzymatic activity. The major advantage of the biotin in vitro translation system is that no radioactivity is required, and the method is easy, economical, reproducible, and fast — the whole nonradioactive procedure, from translation to detection, can be completed within 6 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blobel, G. and Dobberstein, B. (1975) J. Cell. Biol. 67, 852–862.

    Article  PubMed  CAS  Google Scholar 

  2. Clemens, M.J. (1984) Translation of Eukaryotic Messenger RNA in Cell-Free Extracts. In: B.D. Hames and S.J. Higgins (eds) Transcription and Translation: A Practical Approach, IRL Press, Oxford, Washington, DC, pp 231–270.

    Google Scholar 

  3. Connolly, T., Collins, P. and Gilmore, R. (1989) J. Cell. Biol. 108, 299–307.

    Google Scholar 

  4. Craig, D., Howell, M.T., Gibbs, C.L., Hunt, T. and Jackson, R.J. (1992) Nucleic Acids Res. 20 4987–4995

    Google Scholar 

  5. Crowley, S.C., Reinhart, G.D. and Johnson, A.E. (1993) Cell 73, 1101–1115.

    Article  PubMed  CAS  Google Scholar 

  6. DeVries, J.K. and Zubay, G. (1969) J. Bacteriol. 97, 1419–1425.

    PubMed  CAS  Google Scholar 

  7. Erickson, A.H. and Blobel, G. (1983) Cell-Free Translation of Messenger RNA in a Wheat Germ System. In: S. Fleischer and B. Fleischer (eds) Methods in Enzymology, vol. 96, Academic Press, New York, pp 38–50.

    Google Scholar 

  8. Görlich, D., Prehn, S., Hartmann, E., Herz, J., Otto, A., Kraft, R., Wiedmann, M., Knespel, S., Dobberstein, B. and Rapoport, T.A. (1990). J. Cell. Biol 111, 2283–2294.

    Article  PubMed  Google Scholar 

  9. Görlich, D., Kurzchalia, T.V., Wiedmann,M. and Rapoport, T.A. (1991) Probing the Molecular Environment of Translocating Polypeptide Chains by Crosslinking. In: A.M. Tartakoff (ed.) Laboratory Methods in Vesicular and Vectorial Transport, Academic Press, New York, pp 37–58.

    Google Scholar 

  10. Görlich, D., Prehn, S., Hartmann, E., Kallies, K.-U. and Rapoport, T.A. (1992) Cell 71, 489–503.

    Article  PubMed  Google Scholar 

  11. High, S., Görlich, D., Wiedmann, M., Rapoport, T.A. and Doberstein, B. (1991) J. Cell. Biol. 113, 35–44.

    Google Scholar 

  12. Jackson, R.J., Campbell, E.A., Herbert, P. and Hunt, T. (1983) Eur. J. Biochem 131, 289–301.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson, A.E., Woodward, W.R., Herbert, E. and Menninger, J.R. (1976) Biochemistry 15, 569–575.

    Article  PubMed  CAS  Google Scholar 

  14. Johnson, A.E., Miller, D.L. and Cantor, C.R. (1978) Proc. Natl. Acad. Sci. USA 75 3075–3079

    Google Scholar 

  15. Johnson, A.E. and Slobin, L.I. (1980) Nucleic Acids Res. 8, 4185–4200.

    Article  PubMed  CAS  Google Scholar 

  16. Krieg, P. and Melton, D. (1984) Nucleic Acids Res. 12, 7057–7070.

    Google Scholar 

  17. Krieg, U.C., Walter, P. and Johnson, A.E. (1986) Proc. Natl. Acad. Sci. USA 83 8604–8608

    Google Scholar 

  18. Kurzchalia, T.V., Wiedmann, A., Girshovich, A.S., Bochkareva, E.S., Bielka, H. and Rapoport, T.A. (1986) Nature 320 634–636

    Google Scholar 

  19. Kurzchalia, T.V., Wiedemann, M., Breter, H., Zimmermann, W., Bauschke, E. and Rapoport, T.A. (1988) Eur. J. Biochem. 172 663–668

    Google Scholar 

  20. Pelham, H.R.B. and Jackson, R.J. (1976) Eur. J. Biochem 67, 247–256.

    Article  PubMed  CAS  Google Scholar 

  21. Perara, E., Rothman, R.E. and Lingappa, V.R. (1986) Science 232, 348–352.

    Article  PubMed  CAS  Google Scholar 

  22. Pratt, J.M. (1984). Coupled Transcription-Translation in Procaryotic Cell-Free Systems. In: B.D. Hames and S.J. Higgins (eds) Transcription and Translation: A Practical Approach, IRL Press, Oxford, Washington, DC, pp 179–209.

    Google Scholar 

  23. Roberts, B.E. and Paterson, B.M. (1973) Proc. Natl. Acad. Sci. USA 70, 2330–2334.

    Article  PubMed  CAS  Google Scholar 

  24. Schlenstedt, G., Gudmundsson, G.H., Bo-mann, H.G. and Zimmermann, R. (1990) J. Biol. Chem 265, 13960–13968.

    CAS  Google Scholar 

  25. Schlenstedt, G., Gudmundsson, G.H., Bo-mann, H.G. and Zimmermann, R. (1992) J. Biol. Chem 267, 24328–24332.

    CAS  Google Scholar 

  26. Sivaram, P., Wadhwani, S., Klein, M.G., Sasaki, A. and Goldberg, I.J. (1993) Anal. Biochem 214, 511–516.

    Article  PubMed  CAS  Google Scholar 

  27. Tuite, M.F., Plesset, J., Moldave, K. and McLaughlin, C.S. (1980) J. Biol. Chem 255, 8761–8766.

    CAS  Google Scholar 

  28. Walter, P. and Blobel, G. (1983) Preparation of Microsomal Membranes for Co-translational Protein Translocation. In: S. Fleischer and B. Fleischer (eds) Methods in Enzymology, Vol. 96, Academic Press, New York, pp 557–561.

    Google Scholar 

  29. Wiedmann, M., Kurzchalia, T.V., Bielka, H. and Rapoport, T.A. (1987) J. Cell. Biol 104, 201–208.

    Article  PubMed  CAS  Google Scholar 

  30. Zubay, G. (1973) Annu. Rev. Genet 7, 267–287.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag

About this chapter

Cite this chapter

Hoeltke, HJ., Ettl, I., Strobel, E., Leying, H., Zimmermann, M., Zimmermann, R. (1996). Biotin in vitro Translation: A Nonradioactive Method for the Synthesis of Biotin Labeled Proteins in a Cell-Free System. In: Meier, T., Fahrenholz, F. (eds) A Laboratory Guide to Biotin-Labeling in Biomolecule Analysis. BioMethods. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7349-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7349-9_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7351-2

  • Online ISBN: 978-3-0348-7349-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics