Skip to main content

Trophic Factors and the Control of Smooth Muscle Development and Innervation

  • Chapter
Airways Smooth Muscle: Development, and Regulation of Contractility

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

Abstract

Most studies on autonomic innervation of smooth muscle have focused on the short-term mechanisms involved in neurotransmission in physiological and pathophysiological conditions. However recent observations of the long-term plasticity of this system, i.e. its capacity for regeneration and for compensatory change in pattern of innervation and expression of cotransmitters and receptors in ageing, following surgery, trauma or in disease, have indicated that an understanding of the mechanisms involved could influence the design of therapeutic regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burnstock G. Dynamic interaction between growing autonomic nerves and smooth muscle cells as demonstrated by time-lapse cinematography of tissue cultures. In: Owman C, Hardebo JE, editors. Neural regulation of brain circulation. Amsterdam: Elsevier Science Publishers, 1986: 561–8.

    Google Scholar 

  2. Lundberg JM, Martling C-R, Hökfelt T. Airways, oral cavity and salivary glands: classical transmitters and peptides in sensory and autonomic motor neurons. In: Björklund A, Hökfelt T, Owman C, editors. Handbook of chemical neuroanatomy, vol 6: The peripheral nervous system. Amsterdam: Elsevier, 1988: 391–444.

    Google Scholar 

  3. Barnes PJ, Baraniuk JN, Belvisi MG. Neuropeptides in the respiratory tract. Am Rev Respir Dis 1991; 144: 1391–9.

    PubMed  CAS  Google Scholar 

  4. Richardson J, Beland J. Nonadrenergic inhibitory nervous system in human airways. J Appl Physiol 1976; 41: 764–71.

    PubMed  CAS  Google Scholar 

  5. Coburn RF, Peripheral airway ganglia. Ann Rev Physiol 1987; 49: 573–82.

    CAS  Google Scholar 

  6. Burnstock G. Autonomic neural control mechanisms, with special reference to the airways. In: Kaliner MA, Barnes PJ, editors. The airways. Neural control in health and disease. New York: Marcel Dekker, 1988: 1–22.

    Google Scholar 

  7. Allen TGJ, Burnstock G. A voltage-clamp study of the electrophysiological characteristics of the intramural neurones of the rat trachea. J Physiol (Lond) 1990; 423: 593–614.

    CAS  Google Scholar 

  8. Dey RD, Altemus JB, Zervos I, Hoffpauir J. Origin and colocalisation of CGRP- and SP- reactive nerves in cat airway epithelium. J Appl Physiol 1990; 68: 770–8.

    PubMed  CAS  Google Scholar 

  9. Le Douarin N. The neural crest. Cambridge: Cambridge University Press, 1982.

    Google Scholar 

  10. Newgreen DF. Establishment of the form of the peripheral nervous system. In: Hendry IA, Hill CE, editors. Development, regeneration and plasticity of the autonomic nervous system. Switzerland: Harwood Academic Publishers, 1992: 1–94.

    Google Scholar 

  11. Leblanc GG, Bronner-Fraser ME, Neural crest differentiation. In: Hendry IA, Hill CE, editors. Development, regeneration and plasticity of the autonomic nervous system. Switzerland: Harwood Academic Publishers, 1992: 95–137.

    Google Scholar 

  12. Le Douarin N, Dupin E. Cell lineage analysis in neural crest ontogeny. J Neurobiol 1993; 24: 146–61.

    PubMed  Google Scholar 

  13. Hill CE, Vidovic M. Connectivity in the sympathetic nervous system and its establishment during development. In: Hendry IA, Hill CE, editors. Development, regeneration and plasticity of the autonomic nervous system. Switzerland: Harwood Academic Publishers, 1992: 179–229.

    Google Scholar 

  14. Vidovic M, Hill CE, Hendry IA, Parish CR. Binding sites for glycosaminoglycans on developing sympathetic neurones. J Neurosci Res 1986; 15: 503–11.

    PubMed  CAS  Google Scholar 

  15. Ivins JK, Pittman RN. Cellular and molecular influences on neurite outgrowth. In: Development, regeneration and plasticity of the autonomic nervous system. Switzerland: Harwood Academic Publishers 1992: 139–78.

    Google Scholar 

  16. Pittman RN. Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Dev Biol 1985; 110: 91–101.

    PubMed  CAS  Google Scholar 

  17. Leifer D, Lipton SA, Barnstable CJ, Masland RH. Monoclonal antibody to Thy-1 enhances regeneration of processes by rat retinal ganglion cells in culture. Science 1984; 224: 303–6.

    PubMed  CAS  Google Scholar 

  18. Mahanthappa NK, Patterson PH. Antibodies to Thy-1 promote neurite outgrowth from rat sympathetic neurons in vitro, and promote neurite initiation by rat adrenal chromaffin and PC12 cells in the absence of NGF. Soc Neurosci Abstracts 1987; 13: 5.

    Google Scholar 

  19. Suzue T, Kaprielian Z, Patterson PH. A monoclonal antibody that defines rostrocaudal gradients in the mammalial nervous system. Neuron 1990; 5: 421–31.

    PubMed  CAS  Google Scholar 

  20. Barde Y-A, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J 1982; 1: 549–53.

    PubMed  CAS  Google Scholar 

  21. Davies AM, Lumsden A, Barde Y-A. Different factors from the central nervous system and periphery regulate the survival of sensory neurones. Nature 1986; 319: 497–9.

    PubMed  CAS  Google Scholar 

  22. Barbin G, Manthorpe M, Varon S. Purification of the chick eye ciliary neuronotrophic factor. J Neurochem 1984; 43: 1468–78.

    PubMed  CAS  Google Scholar 

  23. Collins F, Dawson A. The effect of nerve growth factor on parasympathetic neurite outgrowth. Proc Natl Acad Sci 1983; 80: 2091–4.

    PubMed  CAS  Google Scholar 

  24. Recio-Pinto E, Rechler MM, Ishii DN. Effects of insulin growth factor II and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons. J Neurosci 1986; 6: 1211–9.

    PubMed  CAS  Google Scholar 

  25. Rush RA, Saltis J, Smet PJ, Williams R. Survival factors for autonomic neurons. In: Hendry IA, Hill CE, editors. Development, regeneration and plasticity of the autonomic nervous system. Switzerland: Harwood Academic Publishers, 1992: 305–63.

    Google Scholar 

  26. Lipton SA, Kater SB. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci 1989; 12: 265–70.

    PubMed  CAS  Google Scholar 

  27. Pincus DW, DiCicco-Bloom E, Black IB. Neuropeptide regulation of neuronal development. In: Hendry IA, Hill CE, editors. Development, regeneration and plasticity of the autonomic nervous system. Switzerland: Harwood Academic Publishers, 1992: 267–303.

    Google Scholar 

  28. Verna JM, Fichard A, Saxod R. Influence of glycosaminoglycans on neurite morphology and outgrowth patterns in vitro. Int J Dev Neurosci 1989; 389–99.

    Google Scholar 

  29. Haydon PG, McCobb DP, Kater SB. Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science 1984; 226: 561–4.

    PubMed  CAS  Google Scholar 

  30. McCobb DP, Cohan CS, Connor JA, Kater SB. Interactive effects of serotonin and acetylcholine on neurite elongation. Neuron 1988; 1: 377–85.

    PubMed  CAS  Google Scholar 

  31. Levi-Montalcini R, Hamburger V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic ganglia of the chick embryo. J Exp Zool 1951; 116: 321–61.

    PubMed  CAS  Google Scholar 

  32. Levi-Montalcini R, Meyer H, Hamburger V. In vitro experiments on the effect of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res 1954; 49–57.

    Google Scholar 

  33. Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell in culture. Physiol Rev 1979; 59: 1–61.

    PubMed  CAS  Google Scholar 

  34. Burnstock G. Development of smooth muscle and its innervation. In: Brading A, Bülbring E, Jones A, Tomita T, editors. Smooth muscle: an assessment of current knowledge. London: Edward Arnold 1981: 431–57.

    Google Scholar 

  35. Chamley JH, Goller I, Burnstock G. Selective growth of sympathetic nerve fibres to explants of normally densely innervated autonomic effector organs in tissue culture. Dev Biol 1973; 31: 362–79.

    Google Scholar 

  36. Chamley JH, Dowell JJ. Specificity of nerve fiber attraction to autonomic effector organs in tissue culture. Exp Cell Res 1975; 90: 1–7.

    PubMed  CAS  Google Scholar 

  37. Chamley JH, Campbell GR, Burnstock G. An analysis of the interactions between sympathetic nerve fibres and smooth muscle cells in tissue culture. Dev Biol 1973; 33: 344–61.

    PubMed  CAS  Google Scholar 

  38. Cohen S. Purification of a nerve-growth promoting protein from the mouse salivary gland and its neurocytotoxic antiserum. Proc Natl Acad Sci 1960; 46: 302–11.

    PubMed  CAS  Google Scholar 

  39. Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987; 237: 1154–61.

    PubMed  CAS  Google Scholar 

  40. Levi-Montalcini R. The nerve growth factor: Its role in growth, differentiation and function of the sympathetic axon. In: Corner MA, Swaab DF, editors. Perspectives in brain research. Amsterdam: Elsevier/North Holland Biomedical Press, 1976: 235–58.

    Google Scholar 

  41. Letourneau PC. Chemotactic response of nerve fiber elongation to nerve growth factor. Dev Biol 1978; 66: 183–96.

    PubMed  CAS  Google Scholar 

  42. Gundersen RW, Barrett JW. Characterisation of the turning response of dorsal root neuntes toward nerve growth factor. J Cell Biol 1980; 87: 546–54.

    PubMed  CAS  Google Scholar 

  43. Gundersen RW. Sensory neurite growth cone guidance by substrate adsorbed nerve growth factor. J Neurosci Res 1985; 13: 199–212.

    PubMed  CAS  Google Scholar 

  44. Davies AM, Bandtlow C, Heumann R, Korsching S, Rohrer H, Thoenen H. Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 1987; 326: 353–8.

    PubMed  CAS  Google Scholar 

  45. Korsching S, Thoenen H. Developmental changes of nerve growth factor levels in sympathetic ganglia and their target organs. Dev Biol 1988; 126: 40–6.

    PubMed  CAS  Google Scholar 

  46. Rohrer H, Heumann R, Thoenen H. The synthesis of nerve growth factor (NGF) in developing skin is independent of innervation. Dev Biol 1988; 128: 240–4.

    PubMed  CAS  Google Scholar 

  47. Clegg DO, Large TH, Bodary SC, Reichardt LT. Regulation of nerve growth factor mRNA levels in developing rat heart ventricle is not altered by sympathectomy. Dev Biol 1989; 134: 30–7.

    PubMed  CAS  Google Scholar 

  48. Mark GE, Chamley JH, Burnstock G. Interactions between autonomic nerves and smooth and cardiac muscle cells in tissue culture. Dev Biol 1973; 32: 194–200.

    PubMed  CAS  Google Scholar 

  49. Purves RD, Hill CE, Chamley JH, Mark GE, Fry DM, Burnstock G. Functional autonomic neuromuscular junctions in tissue culture. Pflügers Arch 1974; 350: 1–7.

    PubMed  CAS  Google Scholar 

  50. Campbell GR, Chamley JH, Burnstock G. Lack of effect of receptor blockers on the formation of long-lasting associations between sympathetic nerves and cardiac muscle cells in vitro. Cell Tissue Res 1978; 187: 551–3.

    PubMed  CAS  Google Scholar 

  51. Unsicker K, Chamley JH, Burnstock G. Studies on the interactions between nerve fibres from para-and orthosympathetic ganglia and adreno-cortical and -medullary cells in joint culture. Cell Tissue Res 1977; 178: 533–49.

    PubMed  CAS  Google Scholar 

  52. Malmfors T, Furness JB, Campbell GR, Burnstock G. Re-innervation of smooth muscle of the vas deferens transplanted into the interior chamber of the eye. J Neurobiol 1971; 2: 193–207.

    PubMed  CAS  Google Scholar 

  53. Burnstock G. Formation of autonomic neuromuscular junctions in vitro. Zoon 1978; 6: 225–34.

    Google Scholar 

  54. Hendry IA, Stöckel K, Thoenen H, Iversen LL. The retrograde axonal transport of nerve growth factor. Brain Res 1974; 68: 103–21.

    PubMed  CAS  Google Scholar 

  55. Oppenheim RW. Cell death during development of the nervous system. Ann Rev Neurosci 1991; 14: 453–501.

    PubMed  CAS  Google Scholar 

  56. Davies AM, Lumsden A. Ontogeny of the somatosensory system. Origin and early development of primary sensory neurons. Ann Rev Neurosci 1990; 13: 61–73.

    PubMed  CAS  Google Scholar 

  57. Hofer MM, Barde Y-A. Brain derived neurotrophic factor prevents neuronal cell death in vivo. Nature 1988; 331: 261–2.

    PubMed  CAS  Google Scholar 

  58. Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EM. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 1988; 106: 829–44.

    PubMed  CAS  Google Scholar 

  59. Raff MC. Social controls on cell survival and cell death. Nature 1992; 356: 397–400.

    PubMed  CAS  Google Scholar 

  60. D’Mello SR, Galli C, SGP2, ubiquitin, 14K lectin and RP8 mRNAs are not induced in neuronal apoptosis. Neuroreport 1993; 4: 355–8.

    PubMed  Google Scholar 

  61. Thoenen H. The changing scene of neurotrophic factors. Trends Neurosci 1991; 5: 165–70.

    Google Scholar 

  62. Schecterson LC, Bothwell M. Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons. Neuron 1992; 9: 449–63.

    PubMed  CAS  Google Scholar 

  63. Bradshaw RA, Blundell TTL, Lapatto R, McDonald NQ, Murray-Rust J. Nerve growth factor revisited. Trends Biol Sci 1993; 18: 48–52.

    CAS  Google Scholar 

  64. Thoenen H, Barde Y-A. Physiology of nerve growth factor. Physiol Rev 1980; 60: 1284–1335.

    PubMed  CAS  Google Scholar 

  65. Barde Y-A. Trophic factors and neuronal survival. Neuron 1989; 2: 1525–34.

    PubMed  CAS  Google Scholar 

  66. Meakin SO, Shooter EM. The nerve growth factor family of receptors. Trends Neurosci 1992; 15: 323–31.

    PubMed  CAS  Google Scholar 

  67. Kaplan DR, Martin-Zanca V, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 1991; 350: 158–60.

    PubMed  CAS  Google Scholar 

  68. Klein R, Jing S, Nanduri V, O’Rourke E, Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 1991; 65: 189–97.

    PubMed  CAS  Google Scholar 

  69. Snider WD, Johnson EM Jr. Neurotrophic molecules. Ann Neurol 1989; 26: 489–506.

    PubMed  CAS  Google Scholar 

  70. Martin DP, Wallace TL, Johnson EM Jr. Cytosine arabinoside kills postmitotic neurons in a fashion resembling trophic factor deprivation: evidence that a deoxycytidine-dependent process may be required for nerve growth factor signal transduction. J Neurosci 1990; 10: 184–93.

    PubMed  CAS  Google Scholar 

  71. Davies AM, Lindsay RM. The cranial sensory ganglia in culture: differences in the response of placode-derived and neural crest-derived neurons to Nerve Growth Factor. Dev Neurosci 1985; 111: 62–72.

    CAS  Google Scholar 

  72. Johnson EM, Rich M, Yip HK. The role of NGF in sensory neurons in vivo. Trends Neurosci 1986; 9: 33–7.

    CAS  Google Scholar 

  73. Hill CE, Hendry IA, Ngu M, Van Helden DF. Subpopulations of sympathetic neurones differ in their sensitivity to nerve growth factor antiserum. Dev Brain Res 1985; 23: 121–30.

    Google Scholar 

  74. Yip HK, Rich KM, Lampe PA, Johnson EM Jr. The effects of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in rat dorsal root ganglia. J Neurosci 1984; 4: 2986–92.

    PubMed  CAS  Google Scholar 

  75. Aberdeen J, Moffitt D, Burnstock G. Increases in NPY in non-sympathetic nerve fibres supplying rat mesenteric vessels after immunosympathectomy. Regul Pept 1991; 34: 43–54.

    PubMed  CAS  Google Scholar 

  76. Aberdeen J, Milner P, Lincoln J, Burnstock G. Guanethidine sympathectomy of mature rats leads to increases in calcitonin gene-related peptide and vasoactive intestinal polypeptide-containing nerves. Neuroscience 1992; 47: 453–61.

    PubMed  CAS  Google Scholar 

  77. Schwartz JP, Pearson J, Johnson EM Jr. Effect of exposure to anti-NGF on sensory neurons of adult rats and guinea pigs. Brain Res 1982; 244: 378–81.

    PubMed  CAS  Google Scholar 

  78. Lindsay RM. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci 1988; 8: 2394–405.

    PubMed  CAS  Google Scholar 

  79. Levi-Montalcini R, Angeletti PU. Nerve growth factor. Physiol Rev 1968; 48: 534–69.

    PubMed  CAS  Google Scholar 

  80. Johnson EM, Gorin PD, Brandeis LD, Pearson J. Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science 1980; 210: 916–8.

    PubMed  CAS  Google Scholar 

  81. Davies AM, Thoenen H, Barde Y-A. Different factors from the central nervous system and periphery regulate the survival of sensory neurones. Nature 1986; 319: 497–9.

    PubMed  CAS  Google Scholar 

  82. Davies AM. Intrinsic differences in the growth rate of early nerve fibres related to target distance. Nature 1989; 337: 553–5.

    PubMed  CAS  Google Scholar 

  83. Lindsay RM, Thoenen H, Barde Y-A. Placode and neural crest-derived sensory neurons are responsive at early developmental stages to brain-derived neurotrophic factor. Dev Biol 1985; 112: 319–28.

    PubMed  CAS  Google Scholar 

  84. Davies AM, Thoenen H, Barde Y-A. The response of chick sensory neurons to brain-derived neurotrophic factor. J Neurosci 1986; 6: 1897–904.

    PubMed  CAS  Google Scholar 

  85. Barde Y-A, Davies AM, Johnson EM, Lindasy RM, Thoenen H. Brain-derived neurotrophic factor. Prog Brain Res 1987; 71: 185–9.

    PubMed  CAS  Google Scholar 

  86. Hohn A, Leibrock J, Bailey K, Barde Y-A. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 1990; 344: 339–49.

    PubMed  CAS  Google Scholar 

  87. Ip NY, Ibanez CF, Nye SH, McClain J, Jones PF, Gies DR et al. Mammalian neurotrophin-4: Structure, chromosomal localization, tissue distribution and receptor specificity. Proc Natl Acad Sci 1992; 89: 3060–4.

    PubMed  CAS  Google Scholar 

  88. Manthorpe M, Skaper SD, Williams LR, Varon S. Purification of adult rat sciatic nerve ciliary neuronotrophic factor. Brain Res 1986; 367: 282–6.

    PubMed  CAS  Google Scholar 

  89. Davis S, Yancopoulos GD. The molecular biology of the CNTF receptor. Curr Opin Neurobiol 1993; 3: 20–4.

    PubMed  CAS  Google Scholar 

  90. Hendry IA, Hill CE. Retrograde axonal transport of target derived macromolecules. Nature 1980; 287: 647–9.

    PubMed  CAS  Google Scholar 

  91. Hendry IA, Hill CE, Bedford D, Watters DJ. A monoclonal antibody to a parasympathetic neurotrophic factor causes immunoparasympathectomy in mice. Brain Res 1988; 475: 160–3.

    PubMed  CAS  Google Scholar 

  92. Wallace TL, Johnson EM Jr. Partial purification of a parasympathetic neurotrophic factor in pig lung. Brain Res 1987; 411: 351–63.

    PubMed  CAS  Google Scholar 

  93. Dreyer D, Lagrange A, Grothe C, Unsicker K. Basic Fibroblast Growth Factor prevents ontogenetic neuron death in vivo. Neurosci Lett 1989; 99: 35–8.

    PubMed  CAS  Google Scholar 

  94. Janet T, Grothe C, Pettmann B, Unsicker K, Sensenbrenner M. Immunocytochemical demonstration of Fibroblast Growth Factor in cultured chick and rat neurons. J Neurosci Res 1988; 19: 195–201.

    PubMed  CAS  Google Scholar 

  95. Dhall U, Cowen T, Haven AJ, Burnstock G. Perivascular noradrenergic and peptide-containing nerves show different patterns of changes during development and ageing in the guinea-pig. J Auton New Syst 1986; 16: 109–26.

    CAS  Google Scholar 

  96. Pincus PW, DiCicco-Bloom E, Black IB. Vasoactive intestinal peptide regulates mitosis, differentiation and survival of cultured sympathetic neuroblasts. Nature 1990; 343: 564–7.

    PubMed  CAS  Google Scholar 

  97. Kessler JA, Bell WO, Black IB. Interactions between the sympathetic and sensory innervation of the iris. J Neurosci 1983; 3: 1301–7.

    PubMed  CAS  Google Scholar 

  98. Brenneman DDE, Nicol T, Warren D, Bowers LM. Vasoactive intestinal peptide: A neurotrophic releasing agent and an astroglial mitogen. J Neurosci Res 1990; 25: 386–94.

    PubMed  CAS  Google Scholar 

  99. Walicke P. Novel neurotrophic factors, receptors, and oncogenes. Ann Rev Neurosci 1989; 12: 103–26.

    PubMed  CAS  Google Scholar 

  100. Chang JY, Martin DP, Johnson EM Jr. Interferon suppresses sympathetic neuronal cell death caused by nerve growth factor deprivation. J Neurochem 1990; 55: 436–45.

    PubMed  CAS  Google Scholar 

  101. Murphy M, Reid K, Hilton DJ, Bartlett PF. Generation of sensory neurons is stimulated by leukemia inhibitory factor. Proc Natl Acad Sci 1991; 88: 3498–501.

    PubMed  CAS  Google Scholar 

  102. Leung DW, Parent AS, Cachianes G, Esch F, Coulombe JN, Nikolics K, et al. Cloning, expression during development and evidence for release of a trophic factor for ciliary ganglion neurons. Neuron 1992; 8: 1045–53.

    PubMed  CAS  Google Scholar 

  103. Cuello AC, Garofalo L, Kenigsberg RL, Maysinger D. Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons. Proc Natl Acad Sci 1989; 86: 2056–60.

    PubMed  CAS  Google Scholar 

  104. Korsching S, Thoenen H. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc Natl Acad Sci 1983; 80: 3513–6.

    PubMed  CAS  Google Scholar 

  105. Heumann R, Korsching S, Scott J, Thoenen H. Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. EMBO J 1984; 3: 3183–9.

    PubMed  CAS  Google Scholar 

  106. Shelton DL, Reichardt LF. Expression of the ß-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc Natl Acad Sci 1984; 81: 7951–5.

    PubMed  CAS  Google Scholar 

  107. Hendry IA, Stach R, Herrup K. Characteristics of the retrograde axonal transport system for nerve growth factor in the sympathetic nervous system. Brain Res 1974; 82: 117–28.

    PubMed  CAS  Google Scholar 

  108. Stoeckel K, Schwab M, Thoenen H. Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res 1975; 99: 1–16.

    CAS  Google Scholar 

  109. Ebendal T, Olson L, Seiger A, Hedlund K-O. Nerve growth factors in the rat iris. Nature 1980; 286: 25–8.

    PubMed  CAS  Google Scholar 

  110. Korsching S, Thoenen H. Treatment with 6-hydroxydopamine and colchicine decreases nerve growth factor levels in sympathetic ganglia and increases them in the corresponding target tissues. J Neurosci 1985; 5: 1058–61.

    PubMed  CAS  Google Scholar 

  111. Rush RA, Abrahamson IK, Belford DA, Murdoch SY, Wilson PA. Regulation of sympathetic trophic factors in smooth muscle. Int J Dev Neurosci 1986; 4: 51–9.

    PubMed  CAS  Google Scholar 

  112. Shelton DL, Reichardt LF. Studies on the regulation of beta-nerve growth factor gene expression in the rat iris: the level of mRNA-encoding nerve growth factor is increased in irises placed in explant cultures in vitro, but not in irises deprived of sensory or sympathetic innervation in vivo. J Cell Biol 1986; 102: 1940–8.

    PubMed  CAS  Google Scholar 

  113. Kessler JA, Adler JE, Black IB. Substance P and somatostatin regulate sympathetic noradrenergic function. Science 1983; 221. 1059–61.

    PubMed  CAS  Google Scholar 

  114. Kessler JA. Parasympathetic, sympathetic and sensory interactions in the iris: nerve growth factor regulates cholinergic ciliary ganglion innervation in vivo. J Neurosci 1985; 5: 2719–25.

    PubMed  CAS  Google Scholar 

  115. Terenghi G, Zhang SQ, Unger WG, Polak JM. Morphological changes of sensory CGRP-immunoreactive and sympathetic nerves in peripheral tissues following chronic denervation. Histochem 1986; 86: 89–95.

    CAS  Google Scholar 

  116. Brauer MM, Lincoln J, Sarner S, Blundell D, Milner P, Passaro M et al. Maturational changes in sympathetic and sensory innervation of the rat uterus: effects of neonatal capsaicin treatment. Int J Dev Neurosci 1994; (in press).

    Google Scholar 

  117. Cole DF, Bloom SR, Burnstock G, Butler JM, McGregor GP, Saffrey MJ et al. Increase in SP-like immunoreactivity in nerve fibres of rabbit iris and ciliary body one to four months following sympathetic denervation. Exp Eye Res 1983; 37: 191–7.

    PubMed  CAS  Google Scholar 

  118. Schön F, Ghatei M, Allen JM, Mulderry PK, Kelly JS, Bloom SR. The effect of sympathectomy on calcitonin gene-related levels in rat trigemino vascular system. Brain Res 1985; 348: 197 200.

    Google Scholar 

  119. Carvalho TLL, Hodson NP, Blank MA, Wilson PF, Mulderry PK, Bishop AE, et al. Occurrence, distribution and origin of peptide-containing nerves of guinea-pig and rat male genitalia and the effects of denervation on sperm characteristics. J Anat 1986; 149: 121–4.

    PubMed  CAS  Google Scholar 

  120. Black IB. Trophic molecules and the evolution of the nervous system. Proc Natl Acad Sci 1986; 83: 8249–52.

    PubMed  CAS  Google Scholar 

  121. Aberdeen J, Corr L, Milner P, Lincoln J, Burnstock G. Marked increases in calcitonin gene-related peptide-containing nerves in the developing rat following long-term sympathectomy with guanethidine. Neuroscience 1990; 35: 175–84.

    PubMed  CAS  Google Scholar 

  122. van Ranst L, Lauweryns JM. Effects of long-term sensory vs. sympathetic denervation on the distribution of calcitonin gene-related peptide and tyrosine hydroxylase immunoreactivities in the rat lung. J Neuroimmunol 1990; 29: 131–8.

    PubMed  Google Scholar 

  123. Fike EA, Simons E, Boswell C, Smith PG. Sensory nerves impair sympathetic reinnervation and recovery of smooth muscle function. Exp Neurol 1992; 118: 85–94.

    PubMed  Google Scholar 

  124. Collins F. An effect of nerve growth factor on the parasympathetic ciliary ganglion. Dev Biol 1984; 4: 1281–8.

    CAS  Google Scholar 

  125. Olson L, Malmfors T. Growth characteristics of adrenergic nerves in the adult rat. Fluorescence histochemical and 3H-noradrenaline uptake studies using tissue transplantations to the anterior chamber of the eye. Acta Physiol Scand 1970; suppl 348: 1–112.

    Google Scholar 

  126. Burnstock G. Degeneration and oriented growth of autonomic nerves in relation to smooth muscle in joint tissue cultures and anterior eye chamber transplants. In: Fuze K, Olson L, Zotterman Y, editors. Dynamics of degeneration and growth of neurons. Oxford: Pergamon Press, 1974: 509–19.

    Google Scholar 

  127. Burnstock G. Co-transmission. The Fifth Heymans Lecture. Arch Int Pharmacodyn Ther 1990; 304: 7–33.

    PubMed  CAS  Google Scholar 

  128. Landis SC, Fredieu JR. Coexistence of calcitonin gene-related peptide and vasoactive intestinal peptide in cholinergic sympathetic innervation of rat sweat glands. Brain Res 1986; 377: 177–81.

    PubMed  CAS  Google Scholar 

  129. Burnstock G. Plasticity in expression of co-transmitters and autonomic nerves in aging and disease. In: Timiras PS, Privat A, editors. Plasticity and regeneration of the nervous system. New York: Plenum Press, 1991: 291–301.

    Google Scholar 

  130. Dhital KK, Gerli R, Lincoln J, Milner P, Tanganelli P, Weber G et al. Increased density of perivascular nerves to the major cerebral vessels of the spontaneously hypertensive rat: differential changes in noradrenaline and neuropeptide Y during development. Brain Res 1988; 444: 33–45.

    PubMed  CAS  Google Scholar 

  131. Gibbins IL, Morris JL. Coexistence of immunoreactivities to neuropeptide Y and vasoactive intestinal peptide in non-adrenergic axons innervating guinea-pig cerebral arteries after sympathectomy. Brain Res 1988; 444: 402–6.

    PubMed  CAS  Google Scholar 

  132. Mione MC, Cavanagh JFR, Lincoln J, Milner P, Burnstock G. Long-term chemical sympathectomy leads to an increase of neuropeptide Y immunoreactivity in cerebrovascular nerves and iris of the developing rat. Neuroscience 1990; 34: 369–78.

    PubMed  CAS  Google Scholar 

  133. Olson L, Ayer-Le Lieve C, Björklund H, Ebendal T, Grandholm AC, Hedlund KO et al. The innervation apparatus of the rodent iris. In: Björklund A, Hökfelt T, Owman C editors. Handbook of Chemical Neuroanatomy, Vol 6 The Peripheral Nervous System. Amsterdam: Elsevier, 1988; 545–97.

    Google Scholar 

  134. Springall DR, Polak JM, Howard L, Power RF, Krausz T, Manickam S, et al. Persistence of intrinsic neurones and possible phenotypic changes after extrinsic denervation of human respiratory tract by heart-lung transplantation. Am Rev Respir Dis 1990; 141: 1538–46.

    PubMed  CAS  Google Scholar 

  135. Kessler JA, Adler JE, Bohn M, Black IB. Substance P in principal sympathetic neurons: regulation by impulse activity. Science 1981; 214: 335–6.

    PubMed  CAS  Google Scholar 

  136. Zigmond R, Hyatt-Sachs H, Baldwin C, Qu X, Sun Y, McKeon T, et al. Phenotypic plasticity in adult sympathetic neurons: changes in neuropeptide expression in organ culture. Proc Natl Acad Sci 1992; 89: 1507–11.

    PubMed  CAS  Google Scholar 

  137. Patterson PH, Chun LLY. The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc Natl Acad Sci 1974; 71: 3607–10.

    PubMed  CAS  Google Scholar 

  138. Patterson PH, Chun LLY. Induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. 1. Effects of conditioned medium. Dev Biol 1977; 56: 263–80.

    PubMed  CAS  Google Scholar 

  139. Landis SC, Siegel RE, Schwab M. Evidence for neurotransmitter plasticity in vivo. 11. Immunocytochemical studies of rat sweat gland innervation during development. Dev Biol 1988; 126: 129–40.

    PubMed  CAS  Google Scholar 

  140. Schotzinger R, Landis SC. Acquisition of cholinergic and peptidergic properties by the sympathetic innervation of rat sweat glands requires interaction with normal target. Neuron 1990; 5: 91–100.

    PubMed  CAS  Google Scholar 

  141. Stevens LM, Landis SC. Target influences on transmitter choice by sympathetic neurons developing in the anterior chamber of the eye. Dev Biol 1990; 137: 109–24.

    PubMed  CAS  Google Scholar 

  142. McMahon SB, Gibson S. Peptide expression is altered when afferent nerves innervate inappropriate tissue. Neurosci Lett 1987; 73: 9–15.

    PubMed  CAS  Google Scholar 

  143. Coulombe JN, Bronner-Fraser M. Cholinergic neurons acquire adrenergic neurotransmitter when transplanted into an embryo. Nature 1986; 324: 569–72.

    PubMed  CAS  Google Scholar 

  144. Coulombe JN, Nishi R. Stimulation of somatostatin expression in developing ciliary ganglion neurons by cells of the choroid layer. J Neurosci 1991; 11: 553–62.

    PubMed  CAS  Google Scholar 

  145. Horgan K, Van der Kooy D. Visceral targets specify calcitonin gene-related peptide and substance P enrichment in trigeminal afferent projections. J Neurosci 1992; 12: 1135–43.

    PubMed  CAS  Google Scholar 

  146. Yamamori T, Fukada K, Aebersold R, Korsching S, Fann MJ, Patterson PH. The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science 1989; 246: 1412–6.

    PubMed  CAS  Google Scholar 

  147. Nawa H, Patterson PH. Separation and partial characterisation of neuropeptide inducing factors in heart cell conditioned medium. Neuron 1990; 4: 269–77.

    PubMed  CAS  Google Scholar 

  148. Nawa H, Yamamori T, Lee T, Patterson PH. The generation of neuronal diversity: Analogies and homologies with hematopoiesis. Cold Spring Harbor Symposium on Quantitative Biology 1991; 55: 247–53.

    Google Scholar 

  149. Nawa H, Nakanishi S, Patterson PH. Recombinant cholinergic differentiation factor (LIF) regulates sympathetic neuron phenotype by alterations in the size and amounts of neuropeptide mRNAs. J Neurochem 1991; 56: 2147–50.

    PubMed  CAS  Google Scholar 

  150. Yamamori T. CDF/LIF selectively increases the levels of c-fos and jun-B transcripts in cultured sympathetic neurons. Neuroreport 1991; 2: 173–6.

    PubMed  CAS  Google Scholar 

  151. Mathieu C, Moisand A, Weber MJ. Acetylcholine metabolism by cultured neurons from rat nodose ganglia: regulation by a macromolecule from muscle-conditioned medium. Neuroscience 1984; 13: 1373–86.

    PubMed  CAS  Google Scholar 

  152. Rao MS, Landis SC. Cell interactions that determine sympathetic neuron transmitter phenotype and the neurokines that mediate them. J Neurobiol 1993; 24: 215–32.

    PubMed  CAS  Google Scholar 

  153. Otten U, Goedert M, Schwab M, Thibault J. Immunization of adult rats against 2.5 nerve growth factor: effects on the peripheral sympathetic nervous system. Brain Res 1979; 176: 79–90.

    PubMed  CAS  Google Scholar 

  154. Otten U, Goedert M, Mayer N, Lembeck F. Requirement of NGF for development of substance P-containing sensory neurons. Nature 1980; 287: 158.

    PubMed  CAS  Google Scholar 

  155. Otten U, Lorenz HP. Nerve growth factor increases substance P, cholecystokinin and vasoactive intestinal polypeptide immunoreactivity in primary sensory neurons of newborn rats. Neurosci Lett 1982; 34: 153–8.

    PubMed  CAS  Google Scholar 

  156. Lindsay RM, Harmer AJ. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature 1989; 337: 362–4.

    PubMed  CAS  Google Scholar 

  157. Denis-Donini S. Expression of dopaminergic phenotypes in the mouse olfactory bulb induced by the calcitonin gene-related peptide. Nature 1989; 339: 701–3.

    PubMed  CAS  Google Scholar 

  158. DeVitry F, Hamon M, Catelon J, Dubois M, Thibault J. Serotonin initiates and autoamplifies its own synthesis during mouse central nervous system development. Proc Natl Acad Sci 1986; 83: 8629–33.

    CAS  Google Scholar 

  159. Wan DC-C, Livett BG. Vasoactive intestinal peptide stimulates proenkephalin A mRNA expression in bovine adrenal chromaffin cells. Neurosci Lett 1989; 101: 218–22.

    PubMed  CAS  Google Scholar 

  160. MacLean MR, Raizada MK, Sumners C. The influence of angiotensin II on catecholamine synthesis in neuronal cultures from rat brain. Biochem Biophys Res Comm 1990; 167: 492–7.

    PubMed  CAS  Google Scholar 

  161. Otten U, Thoenen H. Circadian rhythm of tyrosine hydroxylase induction by short term cold stress: Modulatory action of glucocorticoids in newborn and adult rats. Proc Natl Acad Sci 1975; 72: 1415–9.

    PubMed  CAS  Google Scholar 

  162. Ip N. Zigmond RE. Long term regulation of tyrosine hydroxylase activity in the superior cervical ganglion in organ culture: Effects of nerve stimulation and dexamethasone. Brain Res 1985; 338: 61–70.

    CAS  Google Scholar 

  163. Hart RP, Shadiack AM, Jonakait GM. Substance P gene expression is regulated by interleukin-1 in cultured sympathetic ganglia. J Neurosci Res 1991; 29: 282–91.

    PubMed  CAS  Google Scholar 

  164. Garcia-Arraras JE. Modulation of neuropeptide expression in avian embryonic sympathetic cultures. Dev Brain Res 1991; 50: 19–27.

    Google Scholar 

  165. Campbell GR, Chamley-Campbell JH, Burnstock G. Differentiation and phenotypic modulation of arterial smooth muscle cells. In: Schwartz CJ, Werthessen NT, Wolf S, editors. Structure and function of the circulation. New York: Plenum Press, 1981: 357–99.

    Google Scholar 

  166. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G. A monoclonal antibody against a-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 1986: 103: 2787–96.

    PubMed  CAS  Google Scholar 

  167. Campbell GR, Chamley JH, Burnstock G. Development of smooth muscle cells in tissue culture. J Anat 1974; 117: 295–312.

    PubMed  CAS  Google Scholar 

  168. Chamley JH, Campbell GR, Burnstock G. Dedifferentiation, redifferentiation and bundle formation of smooth muscle cells in tissue culture: The influence of cell number and nerve fibres. J Embryol Exp Morphol 1974; 32: 297–323.

    PubMed  CAS  Google Scholar 

  169. Gröschel-Stewart G, Chamley JH, Campbell GR, Burnstock G. Changes in myosin distribution in dedifferentiating and redifferentiating smooth muscle cells in tissue culture. Cell Tiss Res 1975; 165: 13–22.

    Google Scholar 

  170. Yamauchi A, Burnstock G. Post-natal development of smooth muscle cells in the mouse vas deferens. A fine structural study. J Anat 1969; 104: 1–15.

    PubMed  CAS  Google Scholar 

  171. Campbell GR, Uehara Y, Malmfors T, Burnstock G. Degeneration and regeneration of smooth muscle transplants in the anterior eye chamber: an ultrastructural study. Z Zellforsch Mikrosk Anat 1971; 117: 155–75.

    PubMed  CAS  Google Scholar 

  172. Fritz KE, Jarmolych J, Daoud AS. Association of DNA synthesis and apparent dedifferentiation of aortic smooth muscle cells in vitro. Exp Mol Pathol 1970; 12: 354–62.

    PubMed  CAS  Google Scholar 

  173. Stout RW, Bierman EL, Ross R. Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circ Res 1975; 36: 319–27.

    PubMed  CAS  Google Scholar 

  174. Chamley JH, Campbell GR. Trophic influences of sympathetic nerves and cyclic AMP on differentiation and proliferation of isolated smooth muscle cells in culture. Cell Tiss Res 1975; 161: 497–510.

    CAS  Google Scholar 

  175. Burnstock G, Gannon BJ, Malmfors T, Rogers DC. Changes in the physiology and fine structure of the taenia of the guinea-pig caecum following transplantation into the anterior eye chamber. J Physiol (Lond) 1971; 219: 139–54.

    CAS  Google Scholar 

  176. Lloyd TR, Marvin WJ Jr. Sympathetic innervation improves the contractile performance of neonatal cardiac ventricular myocytes in culture. J Mol Cell Cardiol 1990; 22: 333–42.

    PubMed  CAS  Google Scholar 

  177. Bevan RD. Influence of adrenergic innervation on vascular growth and mature characteristics. Am Rev Respir Dis 1989; 140: 1478–82.

    PubMed  CAS  Google Scholar 

  178. Bevan RD. Effect of sympathetic denervation on smooth muscle cell proliferation in the growing rabbit ear artery. Circ Res 1975; 37: 14–9.

    PubMed  CAS  Google Scholar 

  179. Bevan RD, Tsuru H. Functional and structural changes in the rabbit ear artery following sympathetic denervation. Circ Res 1981; 49: 478–85.

    PubMed  CAS  Google Scholar 

  180. Hart MN, Heistad DD, Brody MJ. Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hypertension 1980; 2: 419–23.

    PubMed  CAS  Google Scholar 

  181. Yang H, Morton W, Lee RMKW, Kajetanowicz A. Autoradiographic study of smooth muscle cell proliferation in spontaneously hypertensive rats. Clin Sci 1989; 76: 475–8.

    PubMed  CAS  Google Scholar 

  182. Mangiarua EI, Lee RM. Increased sympathetic innervation in the cerebral and mesenteric arteries of hypertensive rats. Can J Physiol Pharmacol 1990; 68: 492–9.

    PubMed  CAS  Google Scholar 

  183. Head RJ. Hypernoradrenergic innervation: its relationship to functional and hyperplastic changes in the vasculature of the spontaneously hypertensive rat. Blood Vessels 1989; 26: 1–20.

    PubMed  CAS  Google Scholar 

  184. Lee RMKW, Triggle CR, Cheung DNT, Coughlin MD. Structural and functional consequence of neonatal sympathectomy on the blood vessels of spontaneously hypertensive rats. Hypertension 1987; 10: 328–38.

    PubMed  CAS  Google Scholar 

  185. Lee RMKW, Borkowski KR, Leenen FHH, Tsoporis J, Coughlin M. Combined effect of neonatal sympathectomy and adrenal demedullation on blood pressure and vascular changes in spontaneously hypertensive rats. Circ Res 1991; 69: 714–21.

    PubMed  CAS  Google Scholar 

  186. Albino-Teixeira A, Azevedo I, Branco D, Osswald W. Purine agonists prevent trophic changes caused by sympathetic denervation. Eur J Pharmacol 1990; 179: 141–9.

    PubMed  CAS  Google Scholar 

  187. Osswald W. Mediation by adenosine of the trophic effects exerted by the sympathetic innervation of blood vessels. J Neural Transm 1991; 34: 157–62.

    CAS  Google Scholar 

  188. Sarmento A, Soares-da-Silva P, Albino Teixeira A, Azevedo I. Effects of denervation induced by 6-hydroxydopamine on cell nucleus activity of arterial and cardiac cells of the dog. J Auton Pharmacol 1987; 7: 119–26.

    PubMed  CAS  Google Scholar 

  189. Dimitriadou V, Aubineau P, Taxi J, Seylaz J. Ultrastructural changes in the cerebral artery wall induced by long-term sympathetic denervation. Blood Vessels 1988; 25: 122–43.

    PubMed  CAS  Google Scholar 

  190. Payan DG. Receptor-mediated mitogenic effects of substance P on cultured smooth muscle cells. Biochem Biophys Res Comm 1985; 16: 104–9.

    Google Scholar 

  191. Nilsson J, von Euler AM, Dalsgaard CJ. Stimulation of connective tissue cell growth by substance P and substance K. Nature 1985; 315: 61–3.

    PubMed  CAS  Google Scholar 

  192. Su C, Bevan JA, Assali NS, Brinkman CR. Development of neuro-effector mechanisms in the carotid artery of the fetal lamb. Blood Vessels 1977; 14: 25–42.

    Google Scholar 

  193. Bottaro B, Cutler LS. An electrophysiological study of the postnatal development of the autonomic innervation of the rat submandibular salivary gland. Arch Oral Biol (Oxford) 1984; 29: 237–42.

    CAS  Google Scholar 

  194. Cutler LS, Christian CP, Bottaro B. Development of stimulus-secretion coupling in salivary glands. Meth Cell Biol 1981; 531–45.

    Google Scholar 

  195. Stewart DE, Kirby ML, Aronstam RS. Regulation of beta-adrenergic receptor density in the non-innervated and denervated chick heart. J Mol Cell Cardiol 1986; 18: 469–75.

    PubMed  CAS  Google Scholar 

  196. Slotkin TA, Lau C, Kavlock RJ, Whitmore WL, Queen KL, Orband-Miller L, et al. Trophic control of lung development by sympathetic neurons: effects of neonatal sympathectomy with 6-hydroxydopamine. J Dev Physiol 1988; 10. 577–90.

    PubMed  CAS  Google Scholar 

  197. Handelmann GE, Shults CW, O’Donuhue TL. A developmental influence of substance P on its own receptor. Int J Dev Neurosci 1987; 5: 11–6.

    PubMed  CAS  Google Scholar 

  198. Handelmann GE. Neuropeptide influences on the development of their receptors. Prog Brain Res 1988; 73: 523–33.

    PubMed  CAS  Google Scholar 

  199. Rennick RE, Loesch A, Burnstock G. Endothelin-, vasopressin-and substance P-like immunoreactivity in cultured and intact epithelium from rabbit trachea. Thorax 1992; 47: 1044–9.

    PubMed  CAS  Google Scholar 

  200. Schachter M. Endothelium and smooth muscle: trophic interactions and potential for therapeutic intervention. J Hum Hypertens 1990; 4 (suppl 4): 17–21.

    PubMed  Google Scholar 

  201. Palace GP, Del Vecchio PJ, Horgan MJ, Malik AB. Release of tumor necrosis factor after pulmonary artery occlusion and reperfusion. Am Rev Respir Dis 1993; 147: 143–7.

    PubMed  CAS  Google Scholar 

  202. Yanagisawa M, Kurihura H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–5.

    PubMed  CAS  Google Scholar 

  203. Milner P, Bodin P, Loesch A, Burnstock G. Rapid release of endothelin and ATP from isolated aortic endothelial cells exposed to increased flow. Biochem Biophys Res Commun 1990; 170: 649–56.

    PubMed  CAS  Google Scholar 

  204. MacCumber MW, Ross CA, Snyder SH. Endothelin in brain: Receptors, mitogenesis and biosynthesis in glial cells. Proc Natl Acad Sci 1990; 87: 2539–63.

    Google Scholar 

  205. Resink TJ, Hahn AWA, Scott-Burden T, Powell J, Weber E, Bühler FR. Inducible endothelin mRNA expression and peptide secretion in cultured human vascular smooth muscle cells. Biochem Biophys Res Comm 1990; 168: 1303–10.

    PubMed  CAS  Google Scholar 

  206. MacCumber MW, Ross CA, Glaser BM, Snyder SH. Endothelin: visualization of mRNAs by in situ hybridization provides evidence for local action. Proc Natl Acad Sci 1989; 86: 7285–9.

    PubMed  CAS  Google Scholar 

  207. Black PN, Ghatei MA, Takahashi K, Bretherton-Watt D, Krausz T, Dollery CT, Bloom SR. Formation of endothelin by cultured airway epithelial cells. FEBS Lett 1989; 255: 129.

    PubMed  CAS  Google Scholar 

  208. Ninomiya H, Uchida Y, Ishii Y, Nomura A, Kameyama M, Saotome M, et al. Endotoxin stimulates endothelin release from cultured epithelial cells of guinea-pig trachea. Eur J Pharmacol 1991; 203: 299–302.

    PubMed  CAS  Google Scholar 

  209. Rennick RE, Milner P, Burnstock G. Thrombin stimulates release of endothelin and vasopressin, but not substance P, from isolated rabbit tracheal epithelial cells. Eur J Pharmacol 1993; 230: 367–70.

    PubMed  CAS  Google Scholar 

  210. Komuro I, Kurihara H, Sugiyama T, Takako F, Yzaki Y. Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett 1988; 238: 249–52.

    PubMed  CAS  Google Scholar 

  211. Giaid A, Hamid QA, Springall DR, Yanagisawa M, Shinmi O, Sawamura T et al. Detection of endothelin immunoreactivity and mRNA in pulmonary tumours. J Pathol 1990; 162: 15–22.

    PubMed  CAS  Google Scholar 

  212. Hay DWP, Henry PJ, Goldie RG. Endothelin and the respiratory system. Trends Pharmacol 1993; 14: 29–32.

    CAS  Google Scholar 

  213. Nemecek GM, Coughlin SR, Handley DA, Moskowitz MA. Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc Natl Acad Sci 1986; 83: 674–8.

    PubMed  CAS  Google Scholar 

  214. Milner P, Ralevic V, Hopwood AM, Fehér E, Lincoln J, Kirkpatrick KA, Burnstock G. Ultrastructural localisation of substance P and choline acetyltransferase in endothelial cells of rat coronary artery and release of substance P and acetylcholine during hypoxia. Experientia 1989; 45: 121–5.

    PubMed  CAS  Google Scholar 

  215. Campbell-Boswell M, Robertson AL. Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Med Pathol 1981; 35: 265–76.

    CAS  Google Scholar 

  216. Geisterfer AAT, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 1988; 62: 749–56.

    PubMed  CAS  Google Scholar 

  217. Loesch A, Tomlinson A, Burnstock G. Localization of arginine-vasopressin in endothelial cells of rat pulmonary artery. Anat Embryo) 1991; 183: 129–34.

    CAS  Google Scholar 

  218. Rozengurt E, Legg A, Pettican P. Vasopressin stimulation of mouse 3T3 cell growth. Proc Natl Acad Sci 1979; 76: 1284–7.

    PubMed  CAS  Google Scholar 

  219. Blaes N, Boissel J-P. Growth-stimulating effect of catecholamines on rat aortic smooth muscle cells in culture. J Cell Physiol 1983; 116: 167–72.

    PubMed  CAS  Google Scholar 

  220. Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell 1986; 46: 155–9.

    PubMed  CAS  Google Scholar 

  221. Ross R. Platelet-derived growth factor. Lancet 1989; 1: 1179–82.

    PubMed  CAS  Google Scholar 

  222. Hajjar KA, Hajjar DP, Silverstein RL, Nachman RL. Tumour necrosis factor-mediated release of platelet-derived growth factor from cultured endothelial cells. J Exp Med 1987; 166: 235–45.

    PubMed  CAS  Google Scholar 

  223. Danie TO, Ives HE. Endothelial control of vascular function. News Physiol Sci 1989; 4: 139–42.

    Google Scholar 

  224. Dinarello CA. Biology of interleukin 1. FASEB J 1988; 2: 108–15.

    PubMed  CAS  Google Scholar 

  225. Raines EW, Dower SK, Ross R. Interleukin-I mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989; 243: 393–5.

    PubMed  CAS  Google Scholar 

  226. Dzau VJ, Gibbons GH. The role of the endothelium in vascular remodelling. In: Rubanyi GM, editor. Cardiovascular significance of endothelium-derived vasoactive factors. New York: Futura Publishing Co. Inc., 1991: 281–91.

    Google Scholar 

  227. Zauberman H, Michaelson IC, Bergmann F, Maurice DM. Stimulation of neovascularization of the cornea by biogenic amines. Exp Eye Res 1969; 8: 77–83.

    PubMed  CAS  Google Scholar 

  228. Palmberg L, Claesson H-E, Thyberg J. Leukotrienes stimulate initiation of DNA synthesis in cultured arterial smooth muscle cells. J Cell Sci 1987; 88: 151–9.

    PubMed  CAS  Google Scholar 

  229. Hultgârdh-Nilsson A, Nilsson J, Jonzon B, Dalsgaard CJ. Growth-inhibitory properties of vasoactive intestinal polypeptide. Regul Pept 1988. 22: 267–74.

    PubMed  Google Scholar 

  230. Nilsson J, Olsson AG. Prostaglandin El inhibits DNA synthesis in arterial smooth muscle cells stimulated with platelet-derived growth factor. Atherosclerosis 1984; 53: 77–84.

    PubMed  CAS  Google Scholar 

  231. Jonzon B, Nilsson J, Fredholm BB. Adenosine receptor-mediated changes in cyclic AMP production and DNA synthesis in cultured arterial smooth muscle cells. J Cell Biol 1985; 124: 451–7.

    CAS  Google Scholar 

  232. Loesberg C, Wijk RV, Zandbergen J, van Aken WG, van Mourik JA, DeGroot PG. Cell cycle-dependent inhibition of human vascular smooth muscle cell proliferation by prostaglandin E1. Exp Cell Res 1985; 160: 117–25.

    PubMed  CAS  Google Scholar 

  233. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–7.

    PubMed  CAS  Google Scholar 

  234. Itoh H, Pratt RE, Dzau VJ. Growth inhibitory action of atrial natriuretic polypeptide on vascular smooth muscle cells: new antagonistic relationship to the renin-angiotensin system. Clin Res 1990; 38: 239A.

    Google Scholar 

  235. Clowes AW, Karnovsky MJ. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 1977; 265: 625–6.

    PubMed  CAS  Google Scholar 

  236. Castellot JJ, Cochran DL, Karnovsky MJ. Effect of heparin on vascular smooth muscle cell metabolism. J Cell Physiol 1985; 124: 21–8.

    PubMed  CAS  Google Scholar 

  237. Majack RA, Goodman LV, Dixot VM. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J Cell Biol 1988; 106: 415–22.

    PubMed  CAS  Google Scholar 

  238. Majack RA, Beta type transforming growth factor specifies organizational behaviour in vascular smooth muscle cell cultures. J Cell Biol 1987; 105: 465–71.

    PubMed  CAS  Google Scholar 

  239. Owens GK, Geisterfer AAT, Yang YWH, Komoriya A. Transforming growth factor ß-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol 1988; 107: 771–80.

    PubMed  CAS  Google Scholar 

  240. Black IB, Adler JE, La Gamma EF. Neurotransmitter plasticity in the peripheral nervous system. In: Björklund A, Hökfelt T, Owman C, editors. Handbook of Chemical Neuroanatomy, vol 6 The Peripheral Nervous System. Amsterdam: Elsevier, 1988: 51–63.

    Google Scholar 

  241. Cowen T, Haven AJ, Wen-Qin C, Gallen DD, Franc F, Burnstock G. Development and ageing of perivascular adrenergic nerves in the rabbit. A quantitative fluorescence histochemical study using image analysis. J Auton Nerv Syst. 1982; 5: 317–36.

    PubMed  CAS  Google Scholar 

  242. Cowen T, Burnstock G. Development, aging and plasticity of perivascular autonomic nerves. In: Goodman PM, editor. Developmental Neurobiology of the Autonomic Nervous System. Clifton NJ: Humana Press, 1986: 211–32.

    Google Scholar 

  243. Mione MC, Dhital KK, Amenta F, Burnstock G. An increase in the expression of neuropeptidergic vasodilator, but not vasoconstrictor, cerebrovascular nerves in aging rats. Brain Res 1988; 460: 103–13.

    PubMed  CAS  Google Scholar 

  244. Gavazzi I, Andrews TJ, Thrasivoulou C, Cowen T. Influence of target tissues on their innervation in old age: a transplantation study. Neuroreport 1992; 3: 717–20.

    PubMed  CAS  Google Scholar 

  245. Mione MC, Cavanagh JFR, Lincoln J, Milner P, Burnstock G. Pregnancy reduces noradrenaline but not neuropeptide levels in the uterine artery of the guinea-pig. Cell Tissue Res 1990; 259: 503–9.

    PubMed  CAS  Google Scholar 

  246. Bell C. Dual vasoconstrictor and vasodilator innervation of the uterine arterial supply in guinea-pig. Circ Res 1968; 23: 269–79.

    Google Scholar 

  247. Owman C, Alm P, Rosengren E, Sjöberg NO. Variations in the level of uterine norepinephrine during pregnancy in guinea pig. Am J Obs Gynecol 1975; 122: 961–969.

    CAS  Google Scholar 

  248. Fried G, Hökfelt T, Terenius L, Goldstein M. Neuropeptide Y (NPY)-like immunoreactivity in guinea-pig uterus is reduced during pregnancy in parallel with noradrenergic nerves. Histochemistry 1985; 83: 437–42.

    PubMed  CAS  Google Scholar 

  249. Stjernquist M, Alm P, Ekman R, Owman C, Sjöberg NO, Sundler F. Levels of neural vasoactive intestinal polypeptide in rat uterus are markedly changed in association with pregnancy as shown by immunocytochemistry and radioimmunoassay. Biol Reprod. 1985; 33: 157–63.

    PubMed  CAS  Google Scholar 

  250. Milner P, Crowe R, Burnstock G, Light JK. Neuropeptide Y- and vasoactive intestinal polypeptide-containing nerves in the intrinsic external urethral sphincter in the areflexic bladder compared to detrusor-sphincter dyssynergia in patients with spinal cord injury. J Urol 1987; 138: 888–92.

    PubMed  CAS  Google Scholar 

  251. Crowe R, Burnstock G, Light JK. Spinal cord lesions at different levels affect either the adrenergic or vasoactive intestinal polypeptide-immunoreactive nerves in the human urethra. J Urol 1988; 140: 1412–4.

    PubMed  CAS  Google Scholar 

  252. Kährström J, Harbedo JE, Nordberg C, Owman C. Experiments on cerebrovascular nerve plasticity and trophic vascular adaption in young and adult rats. In: Owman C, Hardebo JE, editors. Neural Regulation of Brain Circulation. Amsterdam: Elsevier, 1986: 589–606.

    Google Scholar 

  253. Nielsch U, Keen P. The effects of nerve injury and blockade of axonal transport on VIP gene expression in sensory neurones. Neurosci Lett 1988; Suppl 32: S70.

    Google Scholar 

  254. de Groat WC, Kawatani MM. Reorganisation of sympathetic preganglionic connections in cat bladder ganglia following parasympathetic denervation. J Physiol (Lond) 1989; 409: 431–49.

    Google Scholar 

  255. Black IB. Regulation of autonomic development. Ann Rev Neurosci 1978; 1: 183–214.

    PubMed  CAS  Google Scholar 

  256. Zigmond R, Schwazschild MA, Rittenhouse AR. Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Ann Rev Neurosci 1989; 12: 415–61.

    PubMed  CAS  Google Scholar 

  257. Goodman RH. Regulation of neuropeptide gene expression. Ann Rev Neurosci 1990; 13: 111–27.

    PubMed  CAS  Google Scholar 

  258. Jones R, Dennison ME, Burnstock G. The effect of decentralisation or chronic hypogastric nerve stimulation in vivo on the innervation and responses of the guinea-pig vas deferens. Cell Tiss Res 1983; 232: 265–79.

    CAS  Google Scholar 

  259. Jones R, Yokota R, Burnstock G. The long-term influence of decentralisation or preganglionic hypogastric nerve stimulation in vivo on the reinnervation of minced vas deferens in the guinea-pig. Cell Tiss Res 1983; 232: 281–93.

    CAS  Google Scholar 

  260. Maynard KI, Loesch A, Burnstock G. Changes in purinergic responses of the rabbit isolated central ear artery after chronic electrical stimulation in vivo. Br J Pharmacol 1992; 107: 833–6.

    PubMed  CAS  Google Scholar 

  261. Loesch A, Maynard KI, Burnstock G. Calcitonin gene-related peptide-and neuropeptide Y-like immunoreactivity in endothelial cells after long-term stimulation of perivascular nerves. Neuroscience 1992; 48: 723–36.

    PubMed  CAS  Google Scholar 

  262. Cowen T, Haven AJ, Milner P, Lincoln J, Burnstock G. Increase in neuropeptide Y, but not noradrenaline, in the superior cervical ganglion of rabbits chronically exposed to cold. J Auton Nery Syst 1988; 24: 175–8.

    CAS  Google Scholar 

  263. Andrews T, Lincoln J, Milner P, Burnstock G, Cowen T. Differential regulation of tyrosine hydroxylase protein and activity in rabbit sympathetic neurones after long-term cold exposure: altered responses in ageing. Brain Res 1993; 624: 69–74.

    PubMed  CAS  Google Scholar 

  264. Schmidt RE, Grabau GG, Yip HK. Retrograde axonal transport of [125I] nerve growth factor in ileal mesenteric nerves in vitro: effect of streptozotocin diabetes. Brain Res 1986; 378: 325–36.

    PubMed  CAS  Google Scholar 

  265. Hellweg R, Hartung HD. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res 1990; 26: 258–67.

    PubMed  CAS  Google Scholar 

  266. Belai A, Lincoln J, Milner P, Burnstock G. Progressive changes in adrenergic, serotonergic and peptidergic nerves in proximal colon of streptozotocin-diabetic rats. Gastroenterology 1988; 95: 1234–41.

    PubMed  CAS  Google Scholar 

  267. Crowe R, Lincoln J, Blacklay PF, Pryor JP, Lumley JSP, Burnstock G. Vasoactive intestinal polypeptide-like immunoreactive nerves in diabetic penis: a comparison between streptozotocin-treated rats and man. Diabetes 1983; 32: 1075–7.

    PubMed  CAS  Google Scholar 

  268. Lincoln J, Milner P, Appenzeller O, Burnstock G, Qualls C. Innervation of normal human sural and optic nerves by noradrenaline-and peptide-containing nervi vasorum and nervorum: effect of diabetes and alcoholism. Brain Res 1993; 632: 48–56.

    PubMed  CAS  Google Scholar 

  269. Dhital KK, Lincoln J. Appenzeller O, Burnstock G. Adrenergic innervation of vasa and nervi nervorum of optic, sciatic, vagus and sympathetic nerve trunks in normal and streptozotocin-diabetic rats. Brain Res 1986; 367: 39–44.

    PubMed  CAS  Google Scholar 

  270. Milner P, Appenzeller O, Qualls C, Burnstock G. Differential vulnerability of neuropeptides in nerves of the vasa nervorum to streptozotocin-induced diabetes. Brain Res 1992; 574: 56–62.

    PubMed  CAS  Google Scholar 

  271. Gannon BJ, Burnstock G, Noblett HR, Campbell PE. Histochemical diagnosis of Hirschsprung’s disease. Lancet 1969; 1: 894–5.

    PubMed  CAS  Google Scholar 

  272. Hamada Y, Bishop AE, Federici G, Rivosecchi M, Talbot IC, Polak JM. Increased neuropeptide Y-immunoreactive innervation of aganglionic bowel in Hirschsprung’s disease. Virchows Arch 1987; 411: 369–77.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Milner, P., Burnstock, G. (1994). Trophic Factors and the Control of Smooth Muscle Development and Innervation. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Development, and Regulation of Contractility. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7408-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7408-3_1

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7410-6

  • Online ISBN: 978-3-0348-7408-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics