Skip to main content

Anatomy of Airways Smooth Muscle

  • Chapter
Airways Smooth Muscle

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

Abstract

The airways of mammals are endowed with smooth muscle. The main effects of the contractile activity of this musculature are: i. to alter the calibre of the airway, hence affecting air pressure and air flow; ii. to alter the rigidity of the airway wall. However, the physiological role of airways smooth muscle is still a matter of speculation [1]. Contractions are predominantly isotonic, i.e. they involve a reduction in length of the muscle and an increase in its thickness. On both accounts, muscle contraction reduces the calibre of the airway segment involved. An isometric component in the contraction is also present. This component is a modest one, on account of the small resistance offered by the content of the airways to compression; it is more substantial, however, when the musculature works against the elasticity of the surrounding tissues, including elastic fibres and cartilages. Airways smooth muscle produces tonic contractions, since it is hardly possible that there are phasic contractions in train with the respiratory cycle. However, the discharge of nerve impulses — not only in sensory fibres but also in efferent fibres to smooth muscle — can be synchronous with specific phases of the respiratory cycle [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Otis AB. A perspective of respiratory mechanics. J Appl Physiol 1983; 54: 1183–1187.

    PubMed  CAS  Google Scholar 

  2. Mitchell RA, Herbert DA, Baker DG. Inspiratory rhythm in airway smooth muscle. J Appl Physiol 1985; 58: 911–920.

    PubMed  CAS  Google Scholar 

  3. Wailoo M, Emery JL. Structure of the membranous trachea in children. Acta Anat (Basel) 1980; 106: 254–261.

    Article  CAS  Google Scholar 

  4. Hakansson CH, Mercke U, Sonesson B, Toremalm NG. Functional anatomy of the musculature of the trachea. Acta Morphol Need Scand 1976; 14: 291–297.

    CAS  Google Scholar 

  5. Ferner H, Müller I. Mikroskopische Anatomie und Arkitecktonik der membranösen Trachealwand des Menschen. Z Mikrosk Anat Forsch 1961; 67: 571–591.

    PubMed  CAS  Google Scholar 

  6. Okazawa M, Paré P, Road J. Tracheal smooth muscle mechanics in vivo. J Applied Physiol 1990; 68: 209–219.

    CAS  Google Scholar 

  7. Miller WS. The musculature of the fine divisions of the bronchial tree and its relation to certain pathological conditions. Am Rev Respir Dis 1921; 5: 689–704.

    Google Scholar 

  8. von Hayek H. The human lung. New York: Hafner, 1960.

    Google Scholar 

  9. Gabella G. The structural apparatus for transmission of force in smooth muscles. Physiol Rev 1984; 64: 455–477.

    PubMed  CAS  Google Scholar 

  10. Armour CL, Diment LM, Black JL. Relationship between smooth muscle volume and contractile response in airway tissue. Isometric versus isotonic measurement. J Pharmacol Exp Ther 1988; 245: 687–691.

    CAS  Google Scholar 

  11. James AL, Hogg JC, Dunn LA, Paré PD. The use of the internal perimeter to compare airway size and to calculate smooth muscle shortening. Am Rev Respir Dis 1988; 138: 136–139.

    Article  PubMed  CAS  Google Scholar 

  12. Eidelman DH, Dimaria GU, Bellofiore S, Wang NS, Guttmann RD, Martin JG. Strain-related differences in airway smooth muscle and airway responsiveness in the rat. Am Rev Respir Dis 1991; 144: 702–796.

    Google Scholar 

  13. Martin JG, Bellofiore S, Guttmann RD. Strain-related difference in airway reactivity amongst highly inbred rat. Am Rev Respir Dis 1987; 135: A473.

    Google Scholar 

  14. Dunnill MS, Massarella GR, Anderson JA. A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax 1969; 24: 176–179.

    Article  PubMed  CAS  Google Scholar 

  15. Hossain S. Quantitative measurement of bronchial muscle in men with asthma. Am Rev Respir Dis 1973; 107: 99–109.

    PubMed  CAS  Google Scholar 

  16. James AL, Paré PD, Hogg JC. The mechanics of airway narrowing in asthma. Am Rev Respir Dis 1989; 139: 242–246.

    Article  PubMed  CAS  Google Scholar 

  17. Richardson JB, Ferguson CC. Neuromuscular structure and function in the airways. Fed Proc 1979; 38: 202–208.

    PubMed  CAS  Google Scholar 

  18. Stephens NL. Airway smooth muscle. Am Rev Respir Dis 1987; 135: 960–975.

    PubMed  CAS  Google Scholar 

  19. Gabella G. Structure of airway smooth muscle and its innervation. In: Coburn RF, editor. Airway smooth muscle in health and disease. New York: Plenum, 1989: 1–16.

    Chapter  Google Scholar 

  20. Gabella G. Ultrastructure of the tracheal muscle in developing, adult and ageing guinea-pigs. Anat Embryol 1991; 183: 71–79.

    Article  PubMed  CAS  Google Scholar 

  21. Cameron AR, Bullock CG, Kirkpatrick CT. The ultrastructure of bovine tracheal smooth muscle. J Ultrastruct Res 1982; 81: 290–305.

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki H, Morita K, Kuriyama H. Innervation and properties of the dog trachea. Jpn J Physiol 1976; 26: 303–320.

    Article  PubMed  CAS  Google Scholar 

  23. Devine CE, Rayns DG. Freeze-fracture studies of membrane systems in vertebrate muscle. II. Smooth muscle. J Ultrastruct Res 1975; 51: 293–306.

    Article  PubMed  CAS  Google Scholar 

  24. Byers TJ, Kunkel LM, Watkins SC. The subcellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle. J Cell Biol 1991; 115: 411–421.

    Article  PubMed  CAS  Google Scholar 

  25. North AJ, Galazkiewicz B, Byers TJ, Glenney JR, Small JV. Complementary distribution of vinculin and dystrophin define two distinct sarcolemma domains in smooth muscle. J Cell Biol 1993; 120: 1159–1167.

    Article  PubMed  CAS  Google Scholar 

  26. Fujimoto T. Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 1993; 120: 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  27. Devine CE, Somlyo AV, Somlyo AP. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol 1972; 52: 690–718.

    Article  PubMed  CAS  Google Scholar 

  28. Popescu LM, Diculescu I. Calcium in smooth muscle sarcoplasmic reticulum in situ. Conventional and X-ray analytical electron miscroscopy. J Cell Biol 1975; 67: 911–918.

    Article  PubMed  CAS  Google Scholar 

  29. Nasu F, Inomata K. Ultracytochemical demonstration of Ca2+-AT Pase activity in the rat saphenous artery and its innervated nerve terminal. J Electron Micr 1990; 39: 487–491.

    CAS  Google Scholar 

  30. Crone C. Modulation of solute permeability in microvascular endothelium. Fed Proc 1986; 45: 77–83.

    PubMed  CAS  Google Scholar 

  31. Garfield RE, Daniel EE. Light and dark smooth muscle cells in estrogen-stimulated rat myometrium. Can J Physiol Pharmacol 1976; 54: 822–833.

    Article  PubMed  CAS  Google Scholar 

  32. Prescott L, Brightman MW. The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations. Tissue & Cell 1976; 8: 241–258.

    Article  CAS  Google Scholar 

  33. Bennett MVL, Barrio LC, Bargiello TA, Spray DC, Hertzberg E, Sáez JC. Gap junctions: new tools, new answers, new questions. Neuron 1991; 6: 305–320.

    Article  PubMed  CAS  Google Scholar 

  34. Jones TR, Kannan MS, Daniel EE. Ultrastructural study of guinea pig tracheal smooth muscle. Am J Physiol 1980; 238: C27–C33.

    Google Scholar 

  35. Daniel EE, Kannan MS, Davis C, Posey-Daniel V. Ultrastructural studies on the neuromuscular control of human tracheal and bronchial muscle. Respir Physiol 1986; 63: 109–128.

    Article  PubMed  CAS  Google Scholar 

  36. Kannan MS, Daniel EE. Formation of gap junctions by treatment in vitro with potassium conductance blockers. J Cell Biol 1978; 78: 338–348.

    Article  PubMed  CAS  Google Scholar 

  37. Risek B, Guthrie S, Kumar N, Gilula NB. Modulation of gap junction transcription and protein expression during pregnancy of the rat. J Cell Biol 1990; 110: 269–282.

    Article  PubMed  CAS  Google Scholar 

  38. Mikkelsen HB, Huizinga JD, Thuneberg L, Rumessen JJ. Immunohistochemical localiza-tion of a gap junction protein (connexin43) in the muscularis externa of murine, canine, and human intestine. Cell Tissue Res 1993; 274: 249–256.

    Article  PubMed  CAS  Google Scholar 

  39. Schwartzmann G, Wiegandt H, Rose B, Zimmerman A, Ben-Haim D, Lowenstein WR. Diameter of the cell-to-cell junctional membrane channels as probed with neutral molecules. Science 1981; 213: 551–553.

    Article  Google Scholar 

  40. Bond M, Somlyo AV. Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol 1982; 95: 403–413.

    Article  PubMed  CAS  Google Scholar 

  41. Geiger B, Dutton AH, Tokayasu KT, Singer SJ. Immunoelectron microscope studies of membrane-microfilament interaction. The distribution of alpha-actinin, tropomyosin and vinculin intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol 1981; 91: 614–628.

    Article  PubMed  CAS  Google Scholar 

  42. Geiger B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 1979; 18: 93–205.

    Article  Google Scholar 

  43. Burridge K, Connell L. Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction. Cell Motil 1983; 3: 405–417.

    Article  PubMed  CAS  Google Scholar 

  44. Böck P, Stockinger L. Light and electron microscopic identification of elastic, elaunin and oxytalan fibers in human tracheal and bronchial mucosa. Anat Embryol 1984; 170: 145–153.

    Article  PubMed  Google Scholar 

  45. Macklin CC. The musculature of the bronchi and lungs. Physiol Rev 1929; 9: 1–60.

    Google Scholar 

  46. Smith RV, Satchell DG. Extrinsic pathway of the adrenergic innervation of the guinea-pig trachealis muscle. J Auton Nerv Syst 1985; 14: 61–73.

    Article  PubMed  CAS  Google Scholar 

  47. Kummer W, Fischer A, Kurkowski R, Heym C. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-la-belling immunohistochemistry. Neuroscience 1992; 49: 715–737.

    Article  PubMed  CAS  Google Scholar 

  48. Springall DR, Cadieux A, Oliveira H, Su H, Royston D, Polak JM. Retrograde tracing shows that CGRP-immunoreactive nerves of rat trachea and lung originate from vagal and dorsal root ganglia. J Auton Nerve Syst 1987; 20: 155–166.

    Article  CAS  Google Scholar 

  49. Dalsgaard CJ, Lundberg JM. Evidence for a spinal afferent innervation of the guinea-pig power respiratory tract as studied by the horseradish peroxidase technique. Neurosci Lett 1984; 45: 117–122.

    Article  PubMed  CAS  Google Scholar 

  50. Baker DG, McDonald DM, Basbaum CB, Mitchell RA. The architecture of nerves and ganglia of the ferret trachea as revealed by acetylcholinesterase histochemistry. J Comp Neurol 1986; 246: 513–526.

    Article  PubMed  CAS  Google Scholar 

  51. Baluk P, Gabella G. Innervation of the guinea pig trachea: a quantitative morphological study of intrinsic neurons and extrinsic nerves. J Comp Neurol 1989; 285: 117–132.

    Article  PubMed  CAS  Google Scholar 

  52. Chiang C-H, Gabella G. Quantitative study of the ganglion neurons of the mouse trachea. Cell Tissue Res 1986; 246: 243–252.

    Article  PubMed  CAS  Google Scholar 

  53. Honjin R. On the nerve supply of the lung of the mouse, with special reference to the structure of the peripheral vegetative nervous system. J Comp Neurol 1956; 105: 587–625.

    Article  PubMed  CAS  Google Scholar 

  54. McDonald DM. Neurogenic inflammation in the rat trachea. I. Changes in venules, leukocytes, and epithelial cells. J Neurocytol 1988; 17: 583–603.

    Article  PubMed  CAS  Google Scholar 

  55. Huang H-T. Unilateral cervical vagotomy decreases the magnitude of neurogenic inflam-mation induced by capsaicin in the ipsilateral bronchial tree of rats. Anat Embryol 1993; 188: 363–370.

    Article  PubMed  CAS  Google Scholar 

  56. Smith RB, Taylor IM. Observations on the intrinsic innervation of trachea, bronchi and pulmonary vessels in the sheep. Acta Anat 1971; 80: 1–13.

    Article  PubMed  CAS  Google Scholar 

  57. Widdicombe J. Regulation of tracheobronchial smooth muscle. Physiol Rev 1963; 43: 1–37.

    PubMed  CAS  Google Scholar 

  58. Kneussl MP, Richardson JP. Alpha-adrenergic receptors in human and canine tracheal and bronchial smooth muscle. J Appl Physiol 1978; 45: 307–311.

    PubMed  Google Scholar 

  59. Vornanen M. Adrenergic responses in different sections of rat airways. Acta Physiol Scand 1982; 114: 587–591.

    Article  PubMed  CAS  Google Scholar 

  60. Fleisch JH, Maling HM, Brodie BB. Evidence for existence of alpha-adrenergic receptors in the mammalian trachea. Am J Physiol 1970; 218: 596–599.

    PubMed  CAS  Google Scholar 

  61. Yip P, Palomini B, Coburn RF. Inhibitory innervation to the guinea pig trachealis muscle. J Appl Physiol 1981; 50: 374–382.

    PubMed  CAS  Google Scholar 

  62. Coburn RF, Tomita T. Evidence for noradrenergic inhibitory nerves in the guinea pig trachealis muscle. Am J Physiol 1973; 224: 1072–1080.

    PubMed  CAS  Google Scholar 

  63. Diamond L, O’Donnell M. A nonadrenergic vagal inhibitory pathway to feline airways. Science 1980; 208: 185–188.

    Article  PubMed  CAS  Google Scholar 

  64. Chesrown SE, Venugopalan CS, Gold WM, Drazen JM. In vivo demonstration of nonadrenergic inhibitory innervation of the guinea pig trachea. J Clin Invest 1980; 65: 314–320.

    Article  PubMed  CAS  Google Scholar 

  65. Lundberg JM, Saria A. Bronchial smooth muscle contraction induced by stimulation of capsaicin-sensitive sensory neurons. Acta Physiol Scand 1982; 116: 473–476.

    Article  PubMed  CAS  Google Scholar 

  66. Lundberg JM, Martling CR, Saria A. Substance P and capsaicin-induced contraction of human bronchi. Acta Physiol Scand 1983; 119: 49–53.

    Article  PubMed  CAS  Google Scholar 

  67. Laitinen A. Ultrastructural organization of intraepithelial nerves in the human airway tract. Thorax 1985; 40: 488–492.

    Article  PubMed  CAS  Google Scholar 

  68. Coleridge HM, Coleridge JCG. Reflexes evoked from tracheobronchial tree and lungs. In: Handbook of physiology, section 3, vol. ii. Respiratory system, Control of breathing, part 1. Bethesda, MD. American Physiological Society, 1986, 395–429.

    Google Scholar 

  69. Sant’Ambrogio G. Nervous receptors of the tracheobronchial tree. Ann Rev Physiol 1987; 49: 611–627.

    Article  Google Scholar 

  70. Widdicombe J. Nervous receptors in the tracheobronchial tree: airway smooth muscle reflexes. In: Airway smooth muscle in health and disease. Coburn RF, editor. New York: Plenum, 1989, 35–53.

    Chapter  Google Scholar 

  71. Fillenz M, Widdicombe JC, Receptors of the lungs and airways. In: Handbook of sensory physiology. Neil E, editor. Berlin, Heidelberg, New York: Springer, 1972, 81–112.

    Google Scholar 

  72. Bartlett D, Jeffery P, Sant’Ambrogio G, Wise JCM. Location of stretch receptors in the trachea and bronchi of the dog. J Physiol 1976; 258: 409–420.

    PubMed  Google Scholar 

  73. Larsell G. The ganglia, plexuses, and nerve-terminations of the mammalian lung and pleura pulmonalis. J Comp Neurol 1922; 35: 97–130.

    Article  Google Scholar 

  74. Pack RJ, Al-Ugaily LH, Widdicombe JG. The innervation of the trachea and extrapul-monary bronchi of the mouse. Cell Tissue Res 1984; 338: 61–68.

    Google Scholar 

  75. Baluk P, Gabella G. Afferent nerve endings in the tracheal muscle of guinea-pigs and rats. Anat Embryol 1991; 183: 81–87.

    Article  PubMed  CAS  Google Scholar 

  76. During Mv, Andres KH, Iravani J. The fine structure of the pulmonary stretch receptor in the rat. Z Anat Entwicklungsgesch 1974; 143: 215–222.

    Article  Google Scholar 

  77. Krauhs JM. Morphology of presumptive slowly adapting receptors in dog trachea. Anat Rec 1984; 210: 73–85.

    Article  PubMed  CAS  Google Scholar 

  78. Avner BP, Delong J, Wilson S, Ladman AJ. A method for culturing canine tracheal smooth muscle cells in vitro: morphologic and pharmacologic observations. Anat Rec 1981; 200: 357–370.

    Article  PubMed  CAS  Google Scholar 

  79. Panitch HB, Allen JL, Ryan JP, Wolfson MR, Shaffer TH. A comparison of preterm and adult airway smooth muscle mechanics. J Appl Physiol 1989; 66: 1760–1765.

    PubMed  CAS  Google Scholar 

  80. Sparrow MP, Mitchell HW. Contraction of smooth muscle of pig airway tissues from before birth to maturity. J Appl Physiol 1990; 68: 468–477.

    PubMed  CAS  Google Scholar 

  81. Amiri MH, Gabella G. Structure of the guinea-pig trachea at rest and in contraction. Anat Embryol 1988; 178: 389–397.

    Article  PubMed  CAS  Google Scholar 

  82. Migally NB, Tucker A, Greenlees K, Wright M, Zambernard J. Density and ultrastruc-ture of mast cells in lung vessels of aging rats exposed to and recovering from chronic hypoxia. Cell Tissue Res 1983; 232: 601–608.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Gabella, G. (1994). Anatomy of Airways Smooth Muscle. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7558-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7558-5_1

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7560-8

  • Online ISBN: 978-3-0348-7558-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics