Skip to main content

T cell-mediated diseases of immunity

  • Chapter
In Vivo Models of Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 98 Accesses

Abstract

The understanding of the immunological processes involved in T cell-mediated disease in humans has greatly benefited from the study of similar processes in animals [11. Whether induced by a specific antigen or spontaneously occurring, all have lent insight to and sometimes confused the puzzle of the etiology and pathogenesis of human disease. This chapter emphasizes three major examples of organ-specific and systemic animal models of T cell-mediated disease in mice. Organ-specific diseases are either antigen-induced, as in experimental allergic encephalomyelitis (EAE), experimental allergic neuritis (EAN), transplant allograft rejection, or graft versus host disease (GVHD), or occur spontaneously as for models of insulin-dependent diabetes mellitus (IDDM). The primary animal model of systemic autoimmune disease is a spontaneously occurring syndrome in inbred mice which resembles human systemic lupus erythematosus (SLE). The goal is to provide a descriptive analysis of a few select models with regard to what is known of the etiology and pathogenesis and to afford opportunities for evaluation of new therapeutic targets and mechanisms for the treatment of human immunological disorders which are the result of T cell regulatory processes. Finally, since animal models are constructs either experimentally or from nature as prototypes of human disease, it should be noted that there are as many subtle differences as there are overt similarities. This should always be kept within the investigators’ hypotheses and interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rose NR (1989) Pathogenic mechanisms in autoimmune diseases. Clin Immunol Immunopathol 53 (Suppl): 57–516

    Google Scholar 

  2. Cohen IR (1992) The cognitive paradigm and the immunological homunculus. Immunol Today 13: 490–494

    PubMed  CAS  Google Scholar 

  3. Bona C (1991) Postulates defining pathogenic autoantibodies and T cells. Autoimmunity 10: 169–172

    PubMed  CAS  Google Scholar 

  4. Rose NR, Bona C (1993) Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 14: 426–430

    PubMed  CAS  Google Scholar 

  5. Nepom G, Erlich H (1991) MHC class-II molecules and autoimmunity. Annu Rev Immunol 9: 493–525

    PubMed  CAS  Google Scholar 

  6. Wicker LS (1997) Major Histocompatibility Complex-linked control of autoimmunity. J Exp Med 186: 973–975

    PubMed  CAS  Google Scholar 

  7. Greenwald RA, Diamond HS (eds) (1988) CRC Handbook of animal models for the rheumatic diseases, Volume II. CRC Press, Boca Raton, 181–183

    Google Scholar 

  8. van Gelder M, Mulder AH, van Bekkum DV (1996) Treatment of relapsing experimental autoimmune encephalomyelitis with largely MHC-matched allogeneic bone marrow transplantation. Transplantation 62: 810–818

    PubMed  Google Scholar 

  9. Cruse JM, Lewis RE (1988) Cellular interactions in autoimmunity. Concepts Immunopathol 6: 1–21

    PubMed  CAS  Google Scholar 

  10. Rees AD, Lombardi G, Scoging A, Barber 1, Mitchell D, Lamb J, Lechler R (1989) Functional evidence for the recognition of endogenous peptides by autoreactive T cell clones. Int Immunol 1: 624–630

    PubMed  CAS  Google Scholar 

  11. Fowell D, Mason D (1993) Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med 177: 627–636

    PubMed  CAS  Google Scholar 

  12. Saoudi A, Seddon B, Heath V, Fowell D, Mason D (1996) The physiological role of regulatory T cells in the prevention of autoimmunity: the function of the thymus in the generation of the regulatory T cell subset. Immunol Rev 149: 195–216

    PubMed  CAS  Google Scholar 

  13. Zamvil S, Nelson P, Trotter J, Mitchell D, Knobler R, Fritz R, Steinman L (1985) T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317: 355–358

    PubMed  CAS  Google Scholar 

  14. Serreze DV, Leiter EH, Worthen SM, Shultz LD (1988) NOD marrow stem cells adop- tively transfer diabetes to resistant (NOD x NOD)F1 mice. Diabetes 37: 252–255

    PubMed  CAS  Google Scholar 

  15. Kotb M (1995) Infection and autoimmunity: A story of the host, the pathogen, and the copathogen. Clin Immunol Immunopathol 74: 10–22

    PubMed  CAS  Google Scholar 

  16. Yoon JW (1991) Role of virus in the pathogenesis of IDDM. Ann Med 23: 437–445

    PubMed  CAS  Google Scholar 

  17. Oldstone MB (1997) Viruses in autoimmune diseases. Scand J Immunol 46: 320–325

    PubMed  CAS  Google Scholar 

  18. Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K (1993) Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol 11: 229–266

    Google Scholar 

  19. Owens T, Sriram S (1995) The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis. Neurol Clin 13: 51–73

    PubMed  CAS  Google Scholar 

  20. Swarnborg RH (1995) Experimental autoimmune encephalomyelitis in rodents as a model for human demyelinating disease. Clin Immunol Immunopathol 77: 4–13

    Google Scholar 

  21. Bach JF (1994) Insulin-dependent diabetes mellitus as an autoimmune disease. Endocrine Rev 15: 516–542

    CAS  Google Scholar 

  22. Kroemer G, Martinez C (1991) Cytokines and autoimmune disease. Clin Immunol Immunopathol 61: 275–295

    PubMed  CAS  Google Scholar 

  23. Feldman M, Brennan FM, Chanty D, Haworth C, Turner M, Katsikis P, Londer M, Abney E, Buchan G, Barrett K et al (1991) Cytokine assays: Role in evaluation of the pathogenesis of autoimmunity. Immunol Rev 119: 105–123

    Google Scholar 

  24. Mossman TR (1991) Cytokine secretion patterns and crossregulation of T cell subsets. Immunol Res 10: 183–188

    Google Scholar 

  25. van Bekkum DW (1994) Biology of acute and chronic graft-versus-host reactions: predictive value of studies in experimental animals. Bone Marrow Transpl 14 (Suppl 4): 51–55

    Google Scholar 

  26. Holoshitz J, Matitiau A, Cohen IR (1984) Arthritis induced in rats by cloned T lymphocytes responsive to mycobacteria but not to collagen type II. J Clin Invest 73: 211–215

    PubMed  CAS  Google Scholar 

  27. Taurog J (1983) The cellular basis of adjuvant arthritis. II. Characterization of the cells mediating passive transfer. Cellular Immunol 80: 198–204

    CAS  Google Scholar 

  28. Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y (1980) Breeding of a non-obese, diabetic strain of mice. Exp Anim 29: 1–13

    CAS  Google Scholar 

  29. Nakhooda AF, Like AA, Chappel CI, Murray FT, Marliss EB (1977) The spontaneous- ly diabetic Wistar rat. Metabolic and morphologic studies. Diabetes 26: 100–112

    PubMed  CAS  Google Scholar 

  30. Leiter E (1998) The NOD mouse: A model for insulin-dependent diabetes. In: Shevach EM, Coico R (eds): Current protocols in immunology, Vol. 3. John Wiley & Sons, Inc, New York, Section 15. 9

    Google Scholar 

  31. Kikutani H, Makino S (1992) The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 51: 285–322

    PubMed  CAS  Google Scholar 

  32. Shieh D-C, Cornelius J, Winter W, Peck A (1993) Insulin dependent diabetes in the NOD mouse model. 1. Detection and characterization of autoantibody bound to the surface of pancreatic beta cells prior to development of the insulitis lesion in prediabetic NOD mice. Autoimmunity 15: 123–135

    PubMed  CAS  Google Scholar 

  33. Bach JF (1995) Insulin-dependent diabetes mellitus as a beta-cell targeted disease of immunoregulation. J Autoimmunity 8: 439–463

    CAS  Google Scholar 

  34. Coleman DL (1980) Acetone metabolism in mice: increased activity in mice heterozygous for obesity genes. Proc Natl Acad Sci USA 77: 290–293

    PubMed  CAS  Google Scholar 

  35. Wicker LS, Todd JA, Peterson LB (1995) Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol 13: 179–200

    PubMed  CAS  Google Scholar 

  36. Ikegami H, Makino S, Yamato E, Kawaguchi Y, Ueda H, Sakamoto T, Takekawa K, Ogihara T (1995) Identification of a new susceptibility locus for insulin-dependent diabetes mellitus by ancestral haplotype congenic mapping. J Clin Invest 96: 1936–1942

    PubMed  CAS  Google Scholar 

  37. Lo D (1996) Transgenic and knockout models of autoimmunity: building a better disease? Clin Immunol Immunopathol 79: 96–104

    PubMed  CAS  Google Scholar 

  38. Rossini AA, Handler ES, Mordes JP, Greiner DL (1995) Human autoimmune diabetes mellitus: Lessons from BB rats and NOD mice-Caveat Emptor. Clin Immunol Immunopathol 74: 2–9

    PubMed  CAS  Google Scholar 

  39. Hutchings P, Rosent H, O’Reilly LA, Simpson E, Gordon S, Cooke A (1990) Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature 348: 639–642

    PubMed  CAS  Google Scholar 

  40. Wong S, Guerder S, Visintin I, Reich E-P, Swenson KE, Flavell RA, Janeway CA (1995) Expression of the co-stimulator molecule B7–1 in pancreatic beta-cells acclerates diabetes in the NOD mouse. Diabetes 44: 326–329

    PubMed  CAS  Google Scholar 

  41. Katz JD, Benoist C, Mathis D (1995) T helper cell subsets in insulin-dependent diabetes. Science 268: 1185–1188

    PubMed  CAS  Google Scholar 

  42. Serreze, DV, Hamaguchi K, Leiter EH (1993) Immunostimulation circumvents diabetes in NOD/Lt mice. J Autoimmunity 2: 759–776

    Google Scholar 

  43. Fox CJ, Danska JS (1997) IL-4 expression at the onset of islet inflammation predicts nondestructive insulitis in nonobese diabetic mice. J Immunol 158: 2414–2424

    PubMed  CAS  Google Scholar 

  44. Mueller R, Bradley LM, Krahl T, Sarvetnick N (1997) Mechanism underlying counter-regulation of autoimmune diabetes by IL-4. Immunity 7: 411–418

    PubMed  CAS  Google Scholar 

  45. von Herrath MG, Oldstone MBA (1997) Interferon-y is essential for destruction of ß cells and development of insulin-dependent diabetes mellitus. J Exp Med 185: 531–539

    Google Scholar 

  46. Grewal IS, Grewal KD, Wong FS, Picarella DE, Janeway CA, Flavell RA (1996) Local expression of transgene encoded TNFŒ in islets prevents autoimmune diabetes in nonobese diabetic (NOD) mice by preventing the development of auto-reactive islet-specific T cells. J Exp Med 184: 1963–1974

    PubMed  CAS  Google Scholar 

  47. McSorely SJ, Soldera S, Malherbe L, Carnaud C, Locksley RM, Flavell RA, Glaicherhaus N (1997) Immunological tolerance to a pancreatic antigen as a result of local expression of TNFct by islet ß cells. Immunology 7: 401–409

    Google Scholar 

  48. Serreze DV, Chapman HD, Varnum DS, Hanson MS, Reifsnyder PC, Richard SD, Fleming SA, Leiter EH, Shultz, LD (1997) B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Ig mu null mice. J Exp Med 184: 2049–2053

    Google Scholar 

  49. Dallas-Pedretti A, McDuffie M, Haskins K (1995) A diabetes-associated T-cell autoantigen maps to a telomeric locus on mouse chromosome 6. Proc Natl Acad Sci USA 92: 1386–1390

    PubMed  CAS  Google Scholar 

  50. Martin R, McFarland HF (1995) Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 32: 121–182

    PubMed  CAS  Google Scholar 

  51. Hafler DA, Weiner HL (1995) Immunological mechanisms and therapy in multiple sclerosis. Immunol Rev 144: 75–107

    PubMed  CAS  Google Scholar 

  52. Scolding NJ, Zajicek JP, Wood N, Compston DS (1994) The pathogenesis of demyelinating disease. Prog Neurobiol 43: 143–173

    PubMed  CAS  Google Scholar 

  53. Sriram S, Carroll L, Fortin S, Cooper S, Ranges G (1988) In vitro immunomodulation by monoclonal anti-CD4 antibody: II. Effect on T cell response to myelin basic protein and experimental allergic encephalomyelitis. J Immunol 141: 464–468

    CAS  Google Scholar 

  54. Schmidt S, Linington C, Zipp F, Sotgiu S, de Waal Malefyt R, Wekerle H, Hohlfeld R (1997) Multiple sclerosis: comparison of the human T-cell response to S100 beta and myelin basic protein reveals parallels to rat experimental panencephalitis. Brain 120: 1437–1445

    PubMed  Google Scholar 

  55. Barron JJ, Madri N, Ruddle G, Hashim G, Janeway CA (1993) Surface expression of a4-integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 177: 57–68

    Google Scholar 

  56. Renno T, Krakowski M, Piccirillo C, Lin J, Owens T (1995) TNFa expression by resident microglia and infiltrating leukocytes in the central nervous system of experimental allergic encephalomyelitis: regulation by TH1 cytokines. J Immunol 154: 944–953

    PubMed  CAS  Google Scholar 

  57. Godiska R, Chantry D, Dietsch GN, Gray PW (1994) Chemokine expression in murine experimental allergic encephalomyelitis. J Neuroimmunol 58: 167–176

    Google Scholar 

  58. Karpus WJ, Kennedy KJ (1997) MIP-1a and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as TH1/TH2 lymphocyte differentiation. J Leuk Biol 62: 681–687

    CAS  Google Scholar 

  59. Gladue RP, Carroll L, Milici AJ, Pettipher ER, Salter ED, Contillo L, Showell H (1996) Inhibition of leukotriene B4-receptor interaction suppresses eosinophil infiltration and disease pathology in a murine model of experimental allergic encephalomyelitis. J Exp Med 183: 1893–1898

    PubMed  CAS  Google Scholar 

  60. Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, Dalton D, Fathman CG (1996) Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 156: 5–7

    Google Scholar 

  61. Rose LM, Richards TL, Peterson J, Petersen R, Alvord EC (1997) Resolution of CNS lesions following treatment of experimental allergic encephalomyelitis in macaques with monoclonal antibody to the CD18 leukocyte antigen. Multiple Sclerosis 2: 259–266

    PubMed  CAS  Google Scholar 

  62. Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72: 551–560

    PubMed  CAS  Google Scholar 

  63. Wang LY, Fujinami RS (1997) Enhancement of EAE and induction of autoantibodies to T-cell epitopes in mice infected with a recombinant vaccinia virus encoding myelin proteolipid protein. J Neuroimmunol 75: 75–83

    PubMed  CAS  Google Scholar 

  64. Ichikawa M, Johns TG, Adelmann M, Bernard CC (1996) Antibody response in Lewis rats injected with myelin oligodendrocyte glycoprotein derived peptides. Int Immunol 8: 1667–1674

    PubMed  CAS  Google Scholar 

  65. Hartung HP, Rieckmann P (1997) Pathogenesis of immune-mediated demyelination in the CNS. J Neural Transmission 50: 173–181

    CAS  Google Scholar 

  66. Devaux B, Enderlin F, Wallner B, Smilek DE (1997) Induction of EAE in mice with recombinant human MOG and treatment of EAE with a MOG peptide. J Neuroimmunol 75: 169–173

    PubMed  CAS  Google Scholar 

  67. Kerlero de Rosbo N, Mendel I, Ben-Nun A (1995) Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course induced in PL/J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes. Eur J Immunol 25: 985–993

    PubMed  CAS  Google Scholar 

  68. Ding M, Wong JL, Rogers NE, Ignarro LJ, Voskuhl RR (1997) Gender differences in inducible nitric oxide production in SJL/J mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 77: 99–106

    PubMed  CAS  Google Scholar 

  69. Berger T, Weerth S, Kojima K, Wekerle H, Lassmann H (1997) Experimental autoimmune encephalmyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab Invest 76: 355–364

    PubMed  CAS  Google Scholar 

  70. Bernard CC, Johns TG, Slavin A, Ichikawa M, Ewing C, Liu J, Bettadapura J (1997). Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis. J Mol Med 75: 77–88

    PubMed  CAS  Google Scholar 

  71. Lafaille JJ, Keere FV, Hsu AL, Baron JL, Haas W, Raine CS, Tonegawa S (1997) Myelin basic protein specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J Exp Med 186: 307–312

    PubMed  CAS  Google Scholar 

  72. Cannella B, Gao YL, Brosnam C, Raine CS (1996) IL-10 fails to abrogate experimental autoimmune encephalomyelitis. J Neuroscience Res 45: 735–746

    CAS  Google Scholar 

  73. Shaw MK, Lorens JB, Dhawan A, DalCanto R, Tse HY, Tran AB, Bonpane C, Eswaran C, Eswaran SL, Brocke S, Sarvetnick N, Steinman L, Nolan GP, Fathman CG (1997) Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med 185: 1711–1714

    PubMed  CAS  Google Scholar 

  74. Liblau R, Steinman L, Brocke S (1997) Experimental autoimmune encephalomyelitis in IL-4 deficient mice. Int Immunol 9: 799–803

    PubMed  CAS  Google Scholar 

  75. Conboy IM, DeKruyff RH, Tate KM, Cao ZA, Moore TA, Umetsu DT, Jones PP (1997) Novel genetic regulation of T helper 1 (Th1/Th2) cytokine production and encephalogenecity in inbred mouse strains. J Exp Med 185: 439–451

    PubMed  CAS  Google Scholar 

  76. Smith T, Hewson AK, Kingsley CL, Leonard JP, Cuzner ML (1997) Interleukin-12 induces relapse in experimental allergic encephalomyelitis in the Lewis rat. Am J Pathol 150: 1909–1917

    PubMed  CAS  Google Scholar 

  77. Segal BM, Stevach EM (1996) IL-12 unmasks latent autoimmune disease in resistant mice. J Exp Med 184: 771–775

    PubMed  CAS  Google Scholar 

  78. Gladue RP, Laquerre AM, Magna HA, Carroll LA, O’Donnell M, Changelian PS, Franke AE (1994) In vivo augmentation of IFNy with a rIL-12 human /mouse chimera: pleiotropic effects against infectious agents in mice and rats. Cytokine 6: 318–328

    CAS  Google Scholar 

  79. Leonard JP, Waldburger KE, Goldman SJ (1996) Regulation of experimental autoimmune encephalomyelitis by interleukin-12. Ann NY Acad Sci 795: 216–226

    PubMed  CAS  Google Scholar 

  80. Korner H, Lemckert FA, Chaudhri G, Etteldorf S, Sedgwick JD (1997) Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system. Eur J Immunol 27: 1973–1981

    PubMed  CAS  Google Scholar 

  81. Taupin V, Renno T, Bourbonniere L, Peterson A., Rodriguez M, Owens T (1997) Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system. Eur J Immunol 27: 905–913

    PubMed  CAS  Google Scholar 

  82. Sun D, Hu X, Liu X, Whitaker JN, Walker WS (1997) Expression of chemokine genes in rat glial cells: the effect of myelin basic protein reactive encephalogenic T cells. J Neurosci Res 48: 192–200

    CAS  Google Scholar 

  83. Miyagishi R, Kikuchi S, Takayama C, Inoue Y, Tashiro K (1997) Identification of cell types producing RANTES, MIP-1 alpha, and MIP-1 beta in rat experimental autoimmune encephalomyelitis by in situ hybridization. J Neuroimmunol 77: 17–26

    PubMed  CAS  Google Scholar 

  84. Rollins BJ (1997) Chemokines. Blood 90: 909–928

    PubMed  CAS  Google Scholar 

  85. Sabelko KA, Kelly KA, Nahm MH, Cross AH, Russell JH (1997) Fas and Fas ligand enhance the pathogenesis of experimental allergic encephalomyelitis, but are not essential for immune privilege in the central nervous system. J Immunol 159: 3096–3099

    PubMed  CAS  Google Scholar 

  86. Waldner H, Sobel RA, Howard E, Kuchroo VK (1997) Fas-and FasL-deficient mice are resistant to induction of autoimmune encephalmyelitis. J Immunol 159: 3100–3103

    PubMed  CAS  Google Scholar 

  87. Clements JM, Cossins JA, Wells GM, Corkill DJ, Helfrich K, Wood LM, Pigott R, Stabler G, Ward GA, Gearing AJ, Miller KM (1997) Matrix metalloproteinase expression during experimental autoimmune encephalmyelitis and effects of a combined matrix metalloproteinase and tumor necrosis factor-alpha inhibitor. J Neuroimmunol 74: 8594

    Google Scholar 

  88. Stinissen P, Raus J, Zhang J (1997) Autoimmune pathogenesis of multiple sclerosis: role of autoreactive T lymphocytes and new immunotherapeutic strategies. Crit Rev Immunol 17: 33–75

    PubMed  CAS  Google Scholar 

  89. Poliak S, Mor F, Conlon P, Wong T, Ling N, Rivier J, Vale W, Steinman L (1997) Stress and autoimmunity: the neuropeptides corticotropin-releasing factor and urocortin suppress encephalomyelitis via effects on both the hypothalmic-pituitary adrenal axis and the immune system. J Immunol 158: 5751–5756

    PubMed  CAS  Google Scholar 

  90. Bolton C, O’Neill JK, Allen SJ, Baker D (1997) Regulation of chronic relapsing experimental allergic encephalomyelitis by endogenous and exogenous glucocorticoids. Int Archives Allergy Imm 114: 74–80

    CAS  Google Scholar 

  91. Kobayashi Y, Kawai K, Ito K, Honda H, Sobue G, Yoshikai Y (1997) Aggravation of murine experimental allergic encephalomyelitis by administration of T-cell receptor gamma-delta-specific antibody. J Neuroimmunol 73: 169–174

    PubMed  CAS  Google Scholar 

  92. Martin R, McFarland H (1996) Experimental immunotherapies for multiple sclerosis. Sem Immunopathol 18: 1–24

    CAS  Google Scholar 

  93. Gerritse K, Deen C, Fasbender M, Ravid R, Boersma W, Claassen E (1994) The involvement of specific anti-myelin basic protein antibody-forming cells in multiple sclerosis immunopathology. J Neuroimmunol 49: 153–159

    PubMed  CAS  Google Scholar 

  94. Merelli E, Bedin R, Sola P, Barozzi P, Mancardi GL, Ficarra G, Franchini G (1997) Human herpes virus 6 and human herpes virus 8 DNA sequences in brains of multiple sclerosis patients, normal adults, and children. J Neurology 244: 450–454

    CAS  Google Scholar 

  95. Yu M, Nishiyama A, Trapp BD, Tuohy VK (1996) Interferon-beta inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis. J Neuroimmunol 64: 91–100

    PubMed  CAS  Google Scholar 

  96. Brod SA, Nelson LD, Khan M, Wolinsky JS (1997) IFN-beta 1ß treatment of relapsing multiple sclerosis has no effect on CD3-induced inflammatory or counterregulatory anti-inflammatory cytokine secretion ex vivo after nine months. International J Neuroscience 90: 135–144

    CAS  Google Scholar 

  97. Weiner HL, Friedman A, Miller A, Khoury SJ, al-Sabbagh A, Santos L, Sayeh M, Nussenblatt RB, Trentham DE, Hafler DA (1994) Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol 12: 809–837

    CAS  Google Scholar 

  98. Drake CG, Rozzo SJ, Vyse TJ, Palmer E, Kotzin BL (1995) Genetic contributions to lupus-like disease in (NZB x NZW)F1 mice. Immunol Rev 144: 51–74

    PubMed  CAS  Google Scholar 

  99. Kotzin BL (1997) Susceptibility loci for lupus: A guiding light from murine models. J Clin Invest 99: 557–558

    PubMed  CAS  Google Scholar 

  100. Steinberg AD, Huston DP, Taurog JD, Cowdery JS, Raveche ES (1981) The cellular and genetic basis of murine lupus. Immunol Rev 55: 121–154

    PubMed  CAS  Google Scholar 

  101. Peng SL, Craft J (1996) T cells in murine lupus: propagation and regulation of disease. Molec Biol Rep 23: 247–251

    CAS  Google Scholar 

  102. Vyse TJ, Kotzin BL (1996) Genetic basis of systemic lupus erythematosus. Cur Opin Immunol 8: 843–851

    CAS  Google Scholar 

  103. Corna D, Morigi M, Facchinetti D, Bertani T, Zoja C, Remuzzi G (1997) Mycophenolate mofetil limits renal damage and prolongs life in murine lupus autoimmune disease. Kid Internat 51: 1583–1589

    CAS  Google Scholar 

  104. Serreze DV, Leiter EH (1994) Genetic and pathogenic basis of autoimmune diabetes in NOD mice. Cur Opin Immunol 6: 900–906

    CAS  Google Scholar 

  105. Mueller R, Sarvetnick N (1995) Transgenic/knockout mice-tools to study autoimmunity. Cur Opin Immunol 7: 799–803

    CAS  Google Scholar 

  106. Renold AE, Porte D, Shafrir E (1988) In: E Shafrir, AE Renold (eds): Frontiers in diabetes research: Lessons from animal diabetes II. Libbey, London, 3–5

    Google Scholar 

  107. Allison AC, Lafferty KJ, Fliri H (eds) (1993) Immunosuppressive and antiinflammatory drugs. Annals of New York Academy of Sciences, vol 696

    Google Scholar 

  108. St. Georgiev V, Yamaguchi H (eds) (1993) Immunomodulating drugs. Annals of New York Academy of Sciences, vol 685

    Google Scholar 

  109. Przepiorka D, Sollinger H (eds) (1995) Recent developments in transplantation medicine. Volume I. New immunosuppressive drugs. Physician and Scientist Publishing Co., Inc., Illinois

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Weringer, E.J., Gladue, R.P. (1999). T cell-mediated diseases of immunity. In: Morgan, D.W., Marshall, L.A. (eds) In Vivo Models of Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7775-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7775-6_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7777-0

  • Online ISBN: 978-3-0348-7775-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics