Skip to main content

Long-range Stress Redistribution Resulting from Damage in Heterogeneous Media

  • Chapter
Computational Earthquake Science Part I

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 275 Accesses

Abstract

It has been shown in CA simulations and data analysis of earthquakes that declustered or characteristic large earthquakes may occur with long-range stress redistribution. In order to understand long-range stress redistribution, we propose a linear-elastic but heterogeneous-brittle model. The stress redistribution in the heterogeneous-brittle medium implies a longer-range interaction than that in an elastic medium. Therefore, it is surmised that the longer-range stress redistribution resulting from damage in heterogeneous media may be a plausible mechanism governing main shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bai Y. L., Xia, M. F., Ke, F. J., and Li, H. L. (2002), Non-equilibrium evolution of collective microdamage and its coupling with mesoscopic heterogeneities and stress fluctuations. In Shock Dynamics and Non-equilibrium Mesoscopic Fluctuations in Solids (eds. Horie, Y. Thadhani, N. and Davison, L., Springer-Verlag (to appear).

    Google Scholar 

  • Bai Y. L., Xia, M. F., Ke, F. J., and Li, H. L. (2002), Closed Trans-scale Statistical Microdamage Mechanics, Acta Mechanica Sinica 18, 1–17.

    Article  Google Scholar 

  • Hill D. P., Reasenbercg, A., Michael, A. Arabaz, W. J., Beroza, G. and et al. (1993), Seismicity Remotely Triggered by the Magnitude 7.3 Landers, California, Earthquake, Science 260, 1617–1623.

    Article  Google Scholar 

  • Klein W., Anghel M., Ferguson, C. D., Rundle, J. B., and SaMartins, J. S. (2000), Statistical analysis of a model for earthquake faults with long-range stress transfer. In Geocomplexity and the Physics of Earthquakes (eds Rundle J B9 Turcotte, D. and Klein, W.,) AGU 2000.

    Google Scholar 

  • Knopoff, L. (2000), The Magnitude Distribution of Declustered Earthquakes in Southern California, PNAS 97, 11,880–11,884.

    Google Scholar 

  • Rundle, J. B. And klein W. (1995), Dynamical segmentation and rupture patterns in a “toy” slider block model for earthquakes, Nonlinear Proc. In GeoPhysics, 2, 61–81.

    Google Scholar 

  • Weatherley, D. Xia, M. F., and Mora P. (2000), Dynamical Complexity in Cellular Automata with Long-range Stress Transfer, AGU 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Bai, Y., Jia, Z., Zhang, X., Ke, F., Xia, M. (2004). Long-range Stress Redistribution Resulting from Damage in Heterogeneous Media. In: Donnellan, A., Mora, P., Matsu’ura, M., Yin, Xc. (eds) Computational Earthquake Science Part I. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7873-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7873-9_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7142-5

  • Online ISBN: 978-3-0348-7873-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics