Skip to main content

Role of Wavelets in the Physical and Statistical Modelling of Complex Geological Processes

  • Chapter
Computational Earthquake Science Part II

Part of the book series: PAGEOPH Topical Volumes ((PTV))

  • 252 Accesses

Abstract

Today wavelets are recognized to have a wide range of useful properties that allow them to treat effectively multifacet problems, such as data compression, scale-localization analysis, feature extraction, statistics, numerical simulation, visualization, and communication. Second-generation wavelets represent a recent improvement of the wavelet algorithm, allowing for greater flexibility in the spatial domain and other computational advantages. We will show how these wavelets can be employed to extract large-scale coherent structures from (1) three-dimensional turbulent flows and (2) high Rayleigh number thermal convection. We will discuss the concept of modelling via decomposition into coherent and incoherent fields, taking into account the effect of the incoherent field via statistical modelling. We will discuss wavelet properties and how they can be utilized and integrated in handling large-scale problems in earthquake physics and other nonlinear phenomena in the geosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrescu, M., Gibert, D., Hulot, G. Le Mouel, J-L., and Saracco, G. (1995), detection of geomagnetic Jerks using wavelet analysis, J. Geophys. Res. 100, 12,557–12,572.

    Article  Google Scholar 

  • Ben-zion, Y., dahmen, K., lyakhovsky, V., ertas, D., and agnon, A. (1999), self-driven mode Switching of earthquake activity on a fault system, earth planet. Sci. Lett. 172, 11–21.

    Google Scholar 

  • Bercovici, D. (1998), generation of plate tectonics from lithosphere-mantle flow and void-volatile self-Lubrication, earth planet. Sci. Lett. 154, 139–151.

    Article  Google Scholar 

  • Bergeron, S. Y., vincent,A. P., yuen, D. A., tranchant, B. J. S., and tchong, C. (1999), viewing seismic velocity anomalies with 3-d continuous gaussian wavelets, geophys. Res. Lett. 26(15), 2311–2314.

    Article  Google Scholar 

  • Burke-hubbard, D. The world according to wavelets (Ak. Peters, Wellesley, MA 1998).

    Google Scholar 

  • Castaing, B., gunaratne, G., heslot, F., kadanoff, L., libchaber, A., thomae, S., Wu, X.Zaleski, S., and Zanetti (1989), scaling of hard thermal turbulence in rayleigh-benard convection, j.Fluid mech. 204, 1–30.

    Article  Google Scholar 

  • Chao, B.-F. And naito,I. (1995), wavelet analysis provides a new tool for studying earth’s rotation, eos, transact. American geophys. Union 16, 161–165.

    Google Scholar 

  • Chiao, L.-Y. And kuo, B.-Y. (2001), multiscale seismic tomography, geophys. J. Int.145, 517–527.

    Article  Google Scholar 

  • cohen, A. And jones, R. (1969), regression on a random field, J. Am. Statist. Assoc. 64.

    Google Scholar 

  • Creutin, J. D. And obled, C. (1982), objective analysis and mapping techniques for rainfall fields, an Objective comparison, water resources res. 18, 413–431.

    Article  Google Scholar 

  • Daubechies, I. (1988), orthonormal bases of compactly supported wavelets, comm. Pure appl. Math. 41, 909–996.

    Google Scholar 

  • Daubechies, I. (1990), the wavelet transform, time frequency localization and signal analysis, ieee trans. Inform. Theory, 36 961–1005.

    Google Scholar 

  • Devore, R. A., jawerth,B., and lucier, B. J. (1992), image compression through wavelet transform coding, ieee trans. Inform. Theory 38(2), 719–746.

    Article  Google Scholar 

  • Donoho, D. (1993), unconditional bases are optimal bases for data compression and for statistical estimation., appl. Comput. Harmon. Anal. 1, 100–115.

    Article  Google Scholar 

  • Donoho, D. L. (1994), de-noising by soft-thresholding, ieee trans. Inf. Theory 41(3), 613–627.

    Article  Google Scholar 

  • donoho, D. L. And johnstone, I. M. (1994), ideal spatial adaptation via wavelet shrinkage, biometrika 81, 425–455.

    Article  Google Scholar 

  • Drazin, P. And reid, W. H., hydrodynamic stability (cambridge university press 1981).

    Google Scholar 

  • Erlebacher, G., hussaini, M. Y., and jameson, L. M. Eds. Wavelets: theory and applications, (oxford university press 1996).

    Google Scholar 

  • Farge, M., schneider, K., and kevlahan, N. (1999), non-gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis, phys. Fluids 11(8), 2187–2201.

    Article  Google Scholar 

  • Goldstein, D. A. And vasilyev, O. V. (2003), stochastic coherent adaptive large eddy simulation method, phys fluids, submitted.

    Google Scholar 

  • Goldstein,D. A., vasilyev, O., wray, A., and rogallo, R. (2000), evaluation of the use of second generation wavelets in the coherent vortex simulation approach. In proc. 2000 summer program, pp. 293–304, center for turbulence Research.

    Google Scholar 

  • Goupillaud,P., grossman, A., and morlet, J. (1984), cyclo-octave and related transforms in seismic signal analysis, geoexploration 23, 85–102.

    Article  Google Scholar 

  • Holzer,M. And siggia, E. D. (1994), turbulent mixing with a passive scalar, phys. Fluids 6(5), 1820–1837.

    Article  Google Scholar 

  • Jameson, L. And miyama, T. (2000), wavelet analysis and ocean modeling: a dynamically adaptive numerical method “wofd-aho ”, monthly weath. Rev. 128, 1536–1548.

    Article  Google Scholar 

  • Jimenez, J. And wray, A. A. (1993), the structure of intense vorticity in isotropic turbulence, j. Fluid mech. 255, 65–90.

    Article  Google Scholar 

  • Kagan, Y. Y. (1992), seismicity: turbulence of solids, nonlinear sci. Today 2, 1–13.

    Google Scholar 

  • Kevlahan, N. K.-R. And vasilyev, O. V. (2003), an adaptive wavelet collocation method for fluid-structure interaction at high reynolds numbers, phys. Fluids, submitted.

    Google Scholar 

  • Kumar, P. And foufoula-georgiou, E. (1997), wavelet analysis for geophysical applications, rev. Geophys. 35, 385–412.

    Article  Google Scholar 

  • Luo, J. And jameson, L. (2002), a wavelet-based technique for identifying, labeling and tracking of ocean eddies, J. Atmos. And ocean tech. 19(3), 381–390.

    Article  Google Scholar 

  • Mallat,S. A wavelet tour of signal processing (academic press, 1998).

    Google Scholar 

  • Manwart, C., aaltosalmi, u., koponen, A., hilfer, R., and timonen, J. (2002), lattice boltzmann and finite-difference simulations for the permeability for three-dimensional porous media, phys. Rev e 66, 016702.

    Google Scholar 

  • Meyer, Y. Ondelettes et operateurs (Hermann, Paris,1990).

    Google Scholar 

  • Moses, E., zocchi, G., procaccia, I., and libchaber, A. (1991), the dynamics and interaction of laminar thermal plumes, europhys. Lett. 14, 55–60.

    Google Scholar 

  • Nychka, D. And saltzman,N. Design of air quality networks. In case studies in environment statistics (eds d. Nychka, W. W. Piegorsch, and l. H. Cox), no. 132 in lecture notes in statistics, (springer-verlag, new york,1998).

    Google Scholar 

  • Nycfka,D., wikle, C., and royle, J. (1999), large spatial prediction problems and nonstationary random fields, tech. Rep., geophysical statistical program, national center for atmospheric Research.

    Google Scholar 

  • Saleur, H., sammis, C., and sornette, D. (1996), discrete scale invariance, complex fractal dimensions, and log-periodic fluctuations in seismicity, J. Geophys. Res. 101, 17,661–17,677.

    Google Scholar 

  • Simons, m. And hager, b. H. (1997), localization of the gravity field and the signature of glacial rebound, nature 390, 500–504.

    Article  Google Scholar 

  • Strang, G. and Nguyen, T. Wavelets and filter banks (wellesley-cambridge press, wellesley, ma. 1996).

    Google Scholar 

  • Sweldens, W. (1996), the lifting scheme: a custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3(2), 186–200.

    Article  Google Scholar 

  • Sweldens, W. (1998), the lifting scheme: a construction of second generation wavelets, siam j. Math. Anal. 29(2), 511–546.

    Article  Google Scholar 

  • Ten, A., yuen, D., podladchikov,Y. Y., larsen, T., pachepsky, E., and malvesky, A. (1997), fractal features in mixing of non-newtonian and newtonian mantle convection, earth planet. Sci. Lett. 146, 401–414.

    Article  Google Scholar 

  • Van den berg, J. C. Ed., wavelets in physics (cambridge university press 1999).

    Google Scholar 

  • Vasilyev, O. V. (2003), solving multi-dimensional evolution problems with localized structures using second generation wavelets, int. J. Comp. Fluid dyn., special issue on high-resolution methods in computational fluid dynamics 17(2), 151–168.

    Google Scholar 

  • Vasilyev, O. V. And bowman, C. (2000), second generation wavelet collocation method for the solution of partial differential equations, j. Comp. Phys. 165, 660–693.

    Article  Google Scholar 

  • Vasilyev,O. V. And kevlahan, N. K.-R. (2002), hybrid wavelet collocation - brinkman penalization method for complex geometry flows, int. J. Numerical methods in fluids 40, 531–538.

    Article  Google Scholar 

  • Vasilyev, O. V. And kevlahan, N. K.-R. (2003), an adaptive multilevel wavelet collocation method for elliptic problems, j. Comp. Phys. Submitted.

    Google Scholar 

  • Vasilyev, O. V. And paolucci, S. (1997), a fast adaptive wavelet collocation algorithm for multi-dimensional pdes, j. Comput. Phys. 125, 16–56.

    Article  Google Scholar 

  • Vasilyev, O. V. Yuen,D. A., and paolucci, S. (1997), the solution of pdes using wavelets, computers in phys. 11(5), 429–435.

    Google Scholar 

  • Vasilyev, O. V. Yuen, D. A. And podladchikov, Y. Y. (1997), applicability of wavelet algorithm for geophysical viscoelastic flow, geophys. Res. Lett. 24(23), 3097–3100.

    Article  Google Scholar 

  • Vasilyev, O. V., podladchikov, Y. Y., and yuen, D. A. (1998), modeling of compaction driven flow in poro-viscoelastic medium using adaptive wavelet collocation method, geophys. Res. Lett. 25(17), 3239–3242.

    Article  Google Scholar 

  • Vasilyev, O. V., podladchikov, Y. Y., and yuen, D. A. (2001), modeling of viscoelastic plume-lithosphere interaction using adaptive multilevel wavelet collocation method, geophys. J. Int. 147(3), 579–589.

    Article  Google Scholar 

  • Vecsey, L. And matyska, C.(2001), wavelet spectra and chaos in thermal convection modelling, geophys. Res. Lett. 28(2), 395–398.

    Article  Google Scholar 

  • Yuen, D. A., hansen, U., zhao,W., vincent, A. P., and malevsky, A. V. (1993), hard turbulent Thermal convection and thermal evolution of the mantle, j. Geophys. Res. 98(e3), 5355–5373.

    Article  Google Scholar 

  • Yuen, D. A., vincent, A. P., kido, M. J. B., and vecsey, L. (2002), geophysical applications of Multidimensional filtering with wavelets, pure appl. Geophy. 159(10), 2285–2309.

    Article  Google Scholar 

  • Zocchi, G., moses, E., and A., L. (1990), coherent structures in turbulent convection, an experimental study, physica 166, 387–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Yuen, D.A., Erlebacher, G., Vasilyev, O.V., Goldstein, D.E., Fuentes, M. (2004). Role of Wavelets in the Physical and Statistical Modelling of Complex Geological Processes. In: Donnellan, A., Mora, P., Matsu’ura, M., Yin, Xc. (eds) Computational Earthquake Science Part II. PAGEOPH Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7875-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7875-3_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7143-2

  • Online ISBN: 978-3-0348-7875-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics