Skip to main content

Abstract

The fundamental concept underlying the theory and practice of control engineering is negative feedback (normally simply referred to as feedback). Feedback is the use of a measurement of some aspect of system behavior to correct or adjust that behavior. Artefacts exhibiting deliberate use of feedback have been extant for over two thousand years, but the English word “feedback” dates from 1920 when it was used to describe parasitic connections in a wireless amplifier which resulted in local oscillations’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airy, G. B., 1840, “On the regulator of the clock-work for effecting uniform movement of equatoreals”, Memoirs of the Royal Astronomical Society, 11: 249–267.

    Google Scholar 

  • Airy, G. B., 1851, “Supplement to paper ‘On the regulator of the clock-work for effecting uniform movement of equatoreals’ ”,Memoirs of the Royal Astronomical Society, 20: 115–119.

    Google Scholar 

  • Bellman, R., 1954, “The theory of dynamic programming”, Bulletin of the American Mathematical Society, 60: 503–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman, R., 1957, Dynamic Programming, Princeton (N.J.), Princeton University Press.

    Google Scholar 

  • Bellman, R. and Kalaba, R., 1964, Selected Papers on Mathematical Trends in Control Theory, New York, Dover.

    MATH  Google Scholar 

  • Bennett, S., 1979, A History of Control Engineering 1800–1930, Stevenage, Peter Peregrinus.

    Book  Google Scholar 

  • Bennett, S., 1984, “Nicolas Minorsky and the automatic steering of ships”, IEEE Control Systems, 4: 10–15.

    Article  Google Scholar 

  • Bennett, S., 1993, A History of Control Engineering 1930–1955, Stevenage, Peter Pergrinus.

    Book  MATH  Google Scholar 

  • Bittanti, S. and Picci, G. (eds.), 1996, Identification, Adaptation,Learning: The Science of Learning Models from Data, Berlin, Springer

    Google Scholar 

  • Black, H. S., 1934, “Stabilized feedback amplifiers”, Bell System Technical Journal, 13: 1–18.

    Google Scholar 

  • Black, H. S., 1977, “Inventing the negative feedback amplifier”, IEEE Spectrum, 14: 55–60.

    Google Scholar 

  • Bode, H. W., 1940, “Relations between attenuation and phase in feedback amplifier design”, Bell System Technical Journal, 19: 421–454.

    Google Scholar 

  • Bode, H. W., 1945, Network Analysis and Feedback Amplifier Design, Princeton (N.J.), Van Nostrand.

    Google Scholar 

  • Bush, V., 1929, Operational Circuit Analysis, New York, Wiley.

    MATH  Google Scholar 

  • Carslaw, H. S. and Jaeger, J. C., 1941, Operational Methods in Applied Mathematics, Oxford, Clarendon Press (2nd ed., 1947).

    Google Scholar 

  • Carson, J. R. 1925, “Electric circuit theory and the operational calculus”, Bell System Technical Journal, 4: 685–761.

    Google Scholar 

  • Carson, J. R., 1926, “Electric circuit theory and the operational calculus”, Bell System Technical Journal, 5: 50–95, 336–384.

    Google Scholar 

  • Carson, J. R., 1926, Electric Circuit Theory and the Operational Calculus, New York, McGraw-Hill.

    Google Scholar 

  • Chaitin, G. J., 1987, Algorithmic Information Theory, Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • Churchill, R. V., 1944, Modern Operational Mathematics in Engineering, New York, McGraw-Hill.

    MATH  Google Scholar 

  • Doetsch, G., 1937, Theorie und Anwendung der Laplace-Transformation, Berlin, Springer.

    Book  Google Scholar 

  • Dorato, P., 1996, “Control history from 1960”, in: Proceedings of the 13th Triennial World Congress of the International Federation of Automatic Control (Gertler, J. J., Cruz, J. B., and Peshkin, M., eds.), San Francisco, Pergamon Press: 129–134.

    Google Scholar 

  • Edwards, P. N., 1996, The Closed World: Computers and the Politics of Discourse in Cold War America, Cambridge (Mass.), MIT Press.

    Google Scholar 

  • Eykhoff, P., 1974, System Identification: Parameter and State Estimation, London, John Wiley & Sons.

    Google Scholar 

  • Forrester, J. W., 1961, Industrial Dynamics, Cambridge (Mass.), MIT Press. Forrester, J. W., 1971, World Dynamics, Cambridge (Mass.), Wright-Allen Press.

    Google Scholar 

  • Gardner, M. A. and Barnes, J. L., 1942, Transients in Linear Systems, New York, Wiley.

    MATH  Google Scholar 

  • Hurewicz, W., 1947, “Filters and servo systems with pulsed data”, in: James, Nichols, and Phillips 1947: 231–261.

    Google Scholar 

  • Hurwitz, A., 1895, “Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reelen Theilen besitzt”, Mathematische Annalen, 46: 273–280.

    Article  MathSciNet  MATH  Google Scholar 

  • James, H. M, Nichols, N. B., and Phillips, R. S., 1947, Theory of Servomechanisms, Radiation Laboratory Series, New York, McGraw-Hill.

    Google Scholar 

  • Kalman, R. E., 1961, “On the general theory of control systems”, in: Proceedings of Automatic and Remote Control, Proceedings of the First International Congress of the International Federation of Automatic Control,Moscow, 1960 (Coales, J. F., ed.), London, Butterworths: 481–492.

    Google Scholar 

  • Kalman, R. E. and Bucy, R. S., 1961, “New results in linear filtering and prediction theory”, Transactions of the American Society of Mechanical Engineers. Journal of Basic Engineering, 83, series D: 95–108.

    MathSciNet  Google Scholar 

  • Kline, S. J., 1995, Conceptual Foundations for Multidisciplinary Thinking, Cambridge, Cambridge University Press.

    Google Scholar 

  • Kullstam, Per A., 1991, “Heaviside’s Operational Calculus: Oliver’s Revenge”, IEEE Transactions on Education, 34 (2): 155–166.

    Article  Google Scholar 

  • Kullstam, Per A., 1992, “Heaviside’s operational calculus applied to electrical circuit problems”, IEEE Transactions on Education, 35 (4): 266–277.

    Article  Google Scholar 

  • Leitch, R. R., 1989, “A review of the approaches to the qualitative modelling of complex systems”, in: Trends in Information Technology (Linkens, D. A., ed.), Stevenage, Peter Peregrinus: 278–297.

    Google Scholar 

  • Levinson, N., 1966, “Wiener’s Life”, Bulletin of the American Mathematical Society, 72: 27.

    Article  MathSciNet  Google Scholar 

  • Ljung, L., 1996, “Developments of system identification”, in: Proceedings of the 13th Triennial World Congress of the International Federation of Automatic Control (Gertler, J. J., Cruz, J. B., and Peshkin, M., eds.), San Francisco: 141–146.

    Google Scholar 

  • Ljung, L., Sjoberg, J., and Hjalmarsson, H., 1996, “On neural network model structures in system identification”, in: Bittanti and Picci 1996: 366–399.

    Google Scholar 

  • MacFarlane, A. G. J., 1970, Dynamical System Models, London, George G. Harrap.

    MATH  Google Scholar 

  • MacFarlane, A. G. J., 1979, “The development of frequency-response methods in automatic control”, IEEE Transactions on Automatic Control, AC-24: 250–265.

    Google Scholar 

  • MacFarlane, A. G. J., 1993, “Information, knowledge and control”, in: Trentelman and Willems 1993: 1–28.

    Google Scholar 

  • Mamdani, E.H., 1974, “Application of fuzzy algorithms for control of a simple plant”, Proceedings of the IEE, 212: 1585–1588.

    Google Scholar 

  • Masani, P. R., 1990, Norbert Wiener 1894–1964, Basel, Birkhäuser Verlag.

    Book  MATH  Google Scholar 

  • Maxwell, J. C., 1859, On the Stability of Motion of Saturn’s Rings, Cambridge, Macmillan. Maxwell, J. C., 1868, “On Governors”, Proceedings of the Royal Society, 16: 270–283.

    Article  Google Scholar 

  • Mayr, O., 1970, The Origins of Feedback Control, Cambridge (Mass.), MIT Press.

    Google Scholar 

  • Mayr, O., 1971a, “Victorian physicists and speed regulation: an encounter between science and technology”, Notes and Records of the Royal Society of London, 26: 205–228

    Google Scholar 

  • Mayr, O., 1971b, “James Clerk Maxwell and the origins of cybernetics”, Isis, 62: 425–444.

    Article  MATH  Google Scholar 

  • Meadows, D. H., Meadows, D. L., Randers, J., and Behrens, W. W. III, 1972, The Limits to Growth, London, Pan Books.

    Google Scholar 

  • Mindell, D. A., 2000, “Automation’s finest hour: radar and system integration in World War II”, in: Systems, Experts,and Computers: The Systems Approach in Management and Engineering World War II and After (Hughes A.C. and Hughes, T. P., eds.), Cambridge (Mass.), MIT Press: 27–56.

    Google Scholar 

  • Minorsky, N., 1922, “Directional stability of automatically steered bodies”, Journal of the American Society of Naval Engineers, 342: 280–309.

    Google Scholar 

  • Moigno, F. L. N. M., 1840–1861, Leçons de calcul différentiel et de calcul intégral, rédigées d’après les méthodes et les ouvrages publiés ou inédits de M. A.-L. Cauchy, 3 vols., Paris, Bachelier.

    Google Scholar 

  • Nyquist, H., 1932, “Regeneration theory”, Bell System Technical Journal, 11: 126–147.

    MATH  Google Scholar 

  • O’Neill, E. F., 1985, A History of Engineering and Science in the Bell System: Transmission Technology (1925–1975), AT & T Bell Laboratories.

    Google Scholar 

  • Owens, L., 1986, “Vannevar Bush and the differential analyzer: the text and context of an early computer”, Technology and Culture, 27: 63–95.

    Article  Google Scholar 

  • Poincaré, H., 1892–1899, Méthodes nouvelles de la mécanique céleste, 3 vols., Paris, Gauthier-Villars.

    Google Scholar 

  • Rosenbrock, H. H., 1962, “Distinctive problems of process control”, Chemical Engineering Progress, 58: 43–50.

    Google Scholar 

  • Rosenbrock, H. H., 1966, “On the design of linear multivariable control systems”, in: Proceedings of Third IFAC World Congress (McLellan, G. D. S., ed.), London, Butterworth: 1–16.

    Google Scholar 

  • Rosenbrock, H. H., 1969, “Design of multivariable systems using the inverse Nyquist array”, Proceedings of the Institution of Electrical Engineers, 116: 1929–1936.

    Article  Google Scholar 

  • Routh, E. J., 1874, “Stability of a dynamical system with two independent motions”, Proceedings of the London Mathematical Society, 5: 92–99.

    Google Scholar 

  • Routh, E. J., 1877, A Treatise on the Stability of Motion, London, Macmillan (reprinted with an introduction by A. T. Fuller as Stability of Motion, London, Taylor & Francis, 1976).

    Google Scholar 

  • Simon, H. A., 1952, “On the application of servomechanism theory in the study of production control”, Econometrica, 20: 247–268.

    Article  MathSciNet  MATH  Google Scholar 

  • Simon, H. A., 1996, The Sciences of the Artificial,3rd ed., Cambridge (Mass.), MIT Press.

    Google Scholar 

  • Slotine, J. J. E. and Sanner, R. M., 1993. “Neural networks for adaptive control and recursive identification: a theoretical framework”, in: Trentelman and Willems 1993: 381–436.

    Google Scholar 

  • Sontag, E. D., 1993, “Neural networks for control”, in: Trentelman and Willems 1993: 341–380.

    Google Scholar 

  • Sterman, J. D., 1989, “Modeling managerial behavior: misperceptions of feedback in a dynamic decision making experiment”, Management Science, 35(3): 321–339.

    Article  Google Scholar 

  • Stodola, A. B., 1893, 1894, “Über die Regulierung von Turbinen”, Schweizer Bauzeitung,22: 113–117,121–122,126–128,134–135; and 23: 108–112, 115–117.

    Google Scholar 

  • Thomson, W. and Tait, P. G., 1867, A Treatise on Natural Philosophy, Oxford, Oxford University Press.

    Google Scholar 

  • Tong, R. M., 1977, “A control engineering review of fuzzy systems”, Automatica, 13: 559–569.

    Google Scholar 

  • Trentelman, H. L. and Willems, J. C. (eds.), 1993, Essays on Control: Perspectives in the Theory and its Applications, Boston (Mass.), Birkhäuser.

    Google Scholar 

  • Tsypkin, Ya Z., 1956, “Frequency method of analysing intermittment regulating systems”, in: Frequency Response (Oldenburger, R., ed.), New York, Macmillan: 309–341.

    Google Scholar 

  • Tustin, A., 1953, Mechanism of Economic Systems, London, Heinemann.

    MATH  Google Scholar 

  • Vincenti, W. G., 1990, What Engineers Know and How They Know It: Analytical Studies from Aeronautical History, Baltimore (MD), Johns Hopkins University Press.

    Google Scholar 

  • Vyschnegradski, I. A., 1876, “Mémoire sur la théorie génerale de régulateurs”, Comptes Rendus de l’Académie des Sciences, 83: 318–321.

    Google Scholar 

  • Vyschnegradski, I. A., 1877, “0 regulyatorakh pryamogo deystvia” (On direct-action regula-tors), Izvestiya Peterburgskogo prakticheskogo tekhnologicheskogo instituta, 1: 21–62.

    Google Scholar 

  • Vyschnegradski, I. A., 1877, “Über directwirkende Regulatoren”, Civilingenieur, 22: 95–131.

    Google Scholar 

  • Vyschnegradski, I. A., 1878, 1879, “Mémoire sur la théorie génerale de régulateurs”, Revue Universelle des Mines, 2“ series, 4: 1–38 and 5: 192–227.

    Google Scholar 

  • Weld, D. G. and de Kleer, J. (eds.), 1989, Readings in Qualitative Reasoning about Physical Systems, San Mateo (Cal.), Morgan Kaufman.

    Google Scholar 

  • Wiener, N., 1931, “Generalized Harmonic Analysis”, Acta Mathematica, 55: 117–258.

    Article  MathSciNet  Google Scholar 

  • Wiener, N.,, 1942, The extrapolation,interpolation and smoothing of stationary time series with engineering applications, Office for Scientific Research and Development Report 370.

    Google Scholar 

  • Wiener, N., 1948, Cybernetics or Control and Communication in the Animal and the Machine, Cambridge (Mass.), MIT Press.

    Google Scholar 

  • Wiener, N., 1949, The Extrapolation,Interpolation and Smoothing of Stationary Time Series with Engineering Applications, Cambridge (Mass.), MIT Press.

    Google Scholar 

  • Willems, J. C., 1996, “From data to state model”, in: Bittanti and Picci 1996: 184–245.

    Google Scholar 

  • Zadeh, L.A., 1962, “From circuit theory to system theory”, Proceedings of the Institute of Radio Engineers, 50: 856–865.

    MathSciNet  Google Scholar 

  • Zadeh, L. A., 1965, “Fuzzy sets”, Information and Control, 8: 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A., 1973, “Outline of a new approach to the analysis of complex systems”, IEEE Transactions on Systems, Man and Cybernetics, 3: 28–44.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Bennett, S. (2004). Technological Concepts and Mathematical Models in the Evolution of Control Engineering. In: Gasca, A.M., Lucertini, M., Nicolò, F. (eds) Technological Concepts and Mathematical Models in the Evolution of Modern Engineering Systems. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7951-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7951-4_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9633-7

  • Online ISBN: 978-3-0348-7951-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics