Skip to main content

Bone morphogenetic protein receptors and their nuclear effectors in bone formation

  • Chapter
Bone Morphogenetic Proteins

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Pioneering studies on the ability of extracts from decalcified bone matrix to promote ectopic bone and cartilage formation [1] led to searches for the identity of these morphogens which define skeletal patterning. With the advent of powerful methods for protein purification, capability to determine amino acid sequences on small amounts of protein and DNA cloning, bone morphogenetic proteins (BMPs) were discovered [24]. The amino acid sequences predicted from their cDNA sequences revealed that BMP-2, BMP-3 and BMP-4 (BMP-1 is a member of the astacin family of metalloproteases) are members of the TGF-13 superfamily, which also includes the TGF-βs and activins [5]. Mainly through their sequence homology with other BMPs approximately 20 members in the BMP subgroup have now been identified and can be divided in multiple groups of structurally related proteins, e.g. BMP2 and BMP-4 are highly related, BMP-6, BMP-7 and BMP-8 form another subgroup, and growth and differentiation factor (GDF)-5 (also termed cartilage-derived morphogenetic protein (CDMP)-1, GDF-7 (also termed CDGF-2) and GDF-6 are similar to each other.In vitroBMPs were found to have potent effects on various cells implicated in cartilage and bone formation, e.g. induce proteoglycan synthesis in chondroblasts and stimulate alkaline phosphatase activity and type I collagen synthesis in osteoblasts [4]. When injected into muscle of rats, BMPs can induce a biological cascade of cellular events leading to ectopic bone formation [3, 4]. GDF-5, GDF-6 and GDF-7 induce more efficiently tendon and cartilage-like structures[6, 7]. Preclinical studies of certain BMPs in primates and other mammals have demonstrated their effectiveness in restoring large segmental bone defects [8, 9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urist MR (1965) Bone: formation by autoinduction.Science150: 893–899

    Article  CAS  Google Scholar 

  2. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities.Science242: 1528–1534

    Article  CAS  Google Scholar 

  3. Sampath TK, Maliakal JC, Hauschka PV, Jones WK, Sasak H, Tucker RF, White KH, Coughlin JE, Tucker MM, Pang RH et al (1992) Recombinant human osteogenic protein-1 (hOP-1) induces new bone formationin vivowith a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiationin vitro. J Biol Chem267: 20352–20362

    CAS  Google Scholar 

  4. Vukicevic S, Luyten FP, Reddi AH (1989) Stimulation of the expression of osteogenic and chondrogenic phenotypesin vitroby osteogenin.Proc Natl Acad Sci USA86: 8793–8797

    Article  CAS  Google Scholar 

  5. Massagué J (1990) The transforming growth factor-n family.Annu Rev Cell Biol6:597–641

    Article  Google Scholar 

  6. Hotten GC, Matsumoto T, Kimura M, Bechtold RF, Kron R, Ohara T, Tanaka H, Satoh Y, Okazaki M, Shirai T et al (1996) Recombinant human growth, differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs.Growth Factors13: 65–74

    Article  CAS  Google Scholar 

  7. Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family.J Clin Invest100: 321–330

    Article  CAS  Google Scholar 

  8. Reddi AH (1994) Symbiosis of biotechnology and biomaterials: applications in tissue engineering of bone and cartilage. JCell Biochem56: 192–195

    Article  CAS  Google Scholar 

  9. Reddi AH (1998) Role of morphogenetic proteins in skeletal tissue engineering and regeneration.Nat Biotechnol16: 247–52

    Article  CAS  Google Scholar 

  10. Cunningham NS, Paralkar V, Reddi AH (1992) Osteogenin and recombinant bone morphogenetic protein 2B are chemotactic for human monocytes and stimulate transforming growth factor (31 mRNA expression.Proc Natl Acad Sci USA89: 11740–11744

    Article  CAS  Google Scholar 

  11. Hogan BL (1996) Bone morphogenetic proteins in development.Curr Opin Genet Dev6: 432–438

    Article  CAS  Google Scholar 

  12. Goumans M-J, Mummery C (2000) Functional analysis of the TGFI3 receptor, Smad pathway through gene ablation in miceInt J Dev Biol44: 253–265

    CAS  Google Scholar 

  13. Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, Jenkins NA (1992) The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGFβ superfamily.Cell71: 399–410

    Article  CAS  Google Scholar 

  14. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGFβ-superfamily.Nature368: 639–643

    Article  CAS  Google Scholar 

  15. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene.Proc Natl Acad Sci USA94: 12457–12461

    Article  CAS  Google Scholar 

  16. Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP (1996) A human chondrodysplasia due to a mutation in a TGF-(3 superfamily member.Nat Genet12: 315–317

    Article  CAS  Google Scholar 

  17. Massagué J (1998) TGF-13 signal transduction.Annu Rev Biochem67: 753–791

    Article  Google Scholar 

  18. Heldin C-H, Miyazono K, ten Dijke P (1997) TGF-3 signalling from cell membrane to nucleusviaSmad proteins.Nature390: 465–471

    Article  CAS  Google Scholar 

  19. Mathews LS, Vale WW (1991) Expression cloning of an activin receptor, a predicted transmembrane serine kinase.Cell65: 973–982

    Article  CAS  Google Scholar 

  20. Lin HY, Wang X-F, Ng-Eaton E, Weinberg RA, Lodish HF (1992) Expression cloning of the TGF-13 type II receptor, a functional transmembrane serine, threonine kinase.Cell68: 775–785

    Article  CAS  Google Scholar 

  21. Ebner R, Chen RH, Shum L, Lawler S, Zioncheck TF, Lee A, Lopez AR, Derynck R (1993) Cloning of a type I TGF-(3 receptor and its effect on TGF-13 binding to the type II receptor.Science260: 1344–1348

    Article  CAS  Google Scholar 

  22. Attisano L, Cárcamo J, Ventura F, Weis FM, Massagué J, Wrana JL (1993) Identification of human activin and TGFβ type I receptors that form heteromeric kinase complexes with type II receptors.Cell75: 671–680

    Article  CAS  Google Scholar 

  23. Franzén P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin C-H, Miyazono K (1993) Cloning of a TGFβ type I receptor that forms a heteromeric complex with the TGFβ type II receptor.Cell75: 681–692

    Article  Google Scholar 

  24. ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL, Ichijo H, Heldin C-H, Miyazono K (1994) Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4.J Biol Chem269: 16985–16988

    Google Scholar 

  25. ten Dijke P, Yamashita H, Ichijo H, Franzén P, Laiho M, Miyazono K, Heldin C-H (1994) Characterization of type I receptors for transforming growth factor-3 and activin.Science264: 101–104

    Article  Google Scholar 

  26. Nohno T, Ishikawa T, Saito T, Hosokawa K, Noji S, Wolsing DH, Rosenbaum JS (1995) Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors.J Biol Chem270: 22522–22526

    Article  CAS  Google Scholar 

  27. Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, Heldin CH, Miyazono K (1995) Cloning and characterization of a human type II receptor for bone morphogenetic proteins.Proc Natl Acad Sci USA92: 7632–7636

    Article  CAS  Google Scholar 

  28. Liu F, Ventura F, Doody J, Massagué J (1995) Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs.Mol Cell Biol15: 3479–3486

    CAS  Google Scholar 

  29. Koenig BB, Cook JS, Wolsing DH, Ting J, Tiesman JP, Correa PE, Olson CA, Pecquet AL, Ventura F, Grant RA et al (1994) Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells.Mol Cell Biol14: 5961–5974

    CAS  Google Scholar 

  30. Yamashita H, ten Dijke P, Huylebroeck D, Sampath TK, Andries M, Smith JC, Heldin C-H, Miyazono K (1995) Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects.J Cell Biol130: 217–226

    Article  CAS  Google Scholar 

  31. ten Dijke P, Ichijo H, Franzen P, Schulz P, Saras J, Toyoshima H, Heldin C-H, Miyazono K (1993) Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine, threonine kinase activity.Oncogene8: 2879–2887

    CAS  Google Scholar 

  32. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J (1994) Mechanism of activation of the TGF-13 receptor.Nature370: 341–347

    Article  CAS  Google Scholar 

  33. Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-(3 induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors.J Cell Biol127: 2021–2036

    Article  CAS  Google Scholar 

  34. Macías-Silva M, Hoodless PA, Tang SJ, Buchwald M, Wrana JL (1998) Specific activation of Smadl signaling pathways by the BMP7 type I receptor, ALK2.J Biol Chem273: 25628–25636

    Article  Google Scholar 

  35. Armes NA, Smith JC (1997) The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds.Development124: 3797–3804

    CAS  Google Scholar 

  36. Nishitoh H, Ichijo H, Kimura M, Matsumoto T, Makishima F, Yamaguchi A, Yamashita H, Enomoto S, Miyazono K (1996) Identification of type I and type II serine, threonine kinase receptors for growth, differentiation factor-5.J Biol Chem271: 21345–21352

    Article  CAS  Google Scholar 

  37. Akiyama S, Katagiri T, Namiki M, Yamaji N, Yamamoto N, Miyama K, Shibuya H, Ueno N, Wozney JM, Suda T (1997) Constitutively active BMP type I receptors trans-duce BMP-2 signals without the ligand in C2C12 myoblasts.Exp Cell Res235: 362–369

    Article  CAS  Google Scholar 

  38. Namiki M, Akiyama S, Katagiri T, Suzuki A, Ueno N, Yamaji N, Rosen V, Wozney JM, Suda T (1997) A kinase domain-truncated type I receptor blocks bone morphogenetic protein-2-induced signal transduction in C2C12 myoblasts.J BiolChem 272: 22046–22042

    Google Scholar 

  39. Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE (1998) Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages.J Cell Biol142: 295–305

    Article  CAS  Google Scholar 

  40. Fujii M, Takeda K, Imamura T, Aoki H, Sampath TK, Enomoto S, Kawabata M, Kato M, Ichijo H, Miyazono K (1999) Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation.Mol Biol Cell10: 3801–3813

    CAS  Google Scholar 

  41. Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Steven SL. (2001) Bone morphogenetic protein-3 is a negative regulator of bone density.Nature Genetics27: 84–88

    CAS  Google Scholar 

  42. Gu Z, Reynolds EM, Song J, Lei H, Feijen A, Yu L, He W, MacLaughlin DT, van den Eijnden-van Raaij J, Donahoe PK et al (1999) The type I serine, threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo.Development126: 2551–2561

    CAS  Google Scholar 

  43. Verschueren K, Dewulf N, Goumans MJ, Lonnoy O, Feijen A, Grimsby S, Vande Spiegle K, Ten Dijke P, Morén A, Vanscheeuwijck P et al (1995) Expression of type I and type IB receptors for activin in midgestation mouse embryos suggests distinct functions in organogenesis.Mech Dev52: 109–123

    Article  CAS  Google Scholar 

  44. Dewulf N, Verschueren K, Lonnoy O, Morén A, Grimsby S, Vande Spiegle K, Miyazono K, Huylebroeck D, ten Dijke P (1995) Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis.Endocrinology136: 2652–2663

    Article  CAS  Google Scholar 

  45. Zou H, Wieser R, Massagué J, Niswander L (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev 11: 2191–2203

    Article  CAS  Google Scholar 

  46. Yi SE, Daluiski A, Pederson R, Rosen V, Lyons KM (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb.Development127: 621–630

    CAS  Google Scholar 

  47. Manova K, De L, Angeles M, Kalantry S, Giarre M, Attisano L, Wrana J, Bachvarova RF (1995) mRNAs for activin receptors II and IIB are expressed in mouse oocytes and in the epiblast of pregastrula and gastrula stage mouse embryos.Mech Dev49: 3–11.

    Article  CAS  Google Scholar 

  48. Matzuk MM, Kumar TR, Bradley A (1995) Different phenotypes for mice deficient in either activins or activin receptor type II.Nature374 (6520): 356–360

    Article  CAS  Google Scholar 

  49. Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos.Dev Biol221: 249–258

    Article  CAS  Google Scholar 

  50. Roelen BA, Goumans M-J, van Rooijen MA, Mummery CL (1997) Differential expression of BMP receptors in early mouse development.Int J Dev Biol41: 541–549

    CAS  Google Scholar 

  51. Yonemori K, Imamura T, Ishidou Y, Okano T, Matsunaga S, Yoshida H, Kato M, Sampath TK, Miyazono K, ten Dijke P et al (1997) Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossification of the posterior longitudinal ligament.Am J Pathol150: 1335–1347

    CAS  Google Scholar 

  52. Sakou T, Onishi T, Yamamoto T, Nagamine T, Sampath Tk, ten Dijke P (1999) Localization of Smads, the TGF-13 family intracellular signaling components during endochondral ossification.J Bone Miner Res14: 1145–1152

    Article  CAS  Google Scholar 

  53. Ishidou Y, Kitajima I, Obama H, Maruyama I, Murata F, Imamura T, Yamada N, ten Dijke P, Miyazono K, Sakou T (1995) Enhanced expression of type I receptors for bone morphogenetic proteins during bone formation.J Bone Miner Res 10:1651–1659

    Article  CAS  Google Scholar 

  54. Hayashi K, Ishidou Y, Yonemori K, Nagamine T, Origuchi N, Maeda S, Imamura T, Kato M, Yoshida H, Sampath TK et al (1997) Expression and localization of bone morphogenetic proteins (BMPs) and BMP receptors in ossification of the ligamentum flavum.Bone21: 23–30

    Article  CAS  Google Scholar 

  55. Okano T, Ishidou Y, Kato M, Imamura T, Yonemori K, Origuchi N, Matsunaga S, Yoshida H, ten Dijke P, Sakou T (1997) Orthotopic ossification of the spinal ligaments of Zucker fatty rats: a possible animal model for ossification of the human posterior longitudinal ligament.J Orthop Res15: 820–829

    Article  CAS  Google Scholar 

  56. Sakou T (1998) Bone morphogenetic proteins: from basic studies to clinical approaches. Bone 22: 591–603

    Article  CAS  Google Scholar 

  57. Mishina Y, Suzuki A, Ueno N, Behringer RR (1995) Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis.Genes Dev9: 3027–3037

    Article  CAS  Google Scholar 

  58. Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse.Genes Dev9: 2105–2116

    Article  CAS  Google Scholar 

  59. Oh SP, Li E (1997) The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse.Genes Dey 11:1812–1826

    Article  CAS  Google Scholar 

  60. Song J, Oh SP, Schrewe H, Nomura M, Lei H, Okano M, Gridley T, Li E (1999) The type II activin receptors are essential for egg cylinder growth, gastrulation, and rostral head development in mice.Dev Biol213: 157–169

    Article  CAS  Google Scholar 

  61. Gilboa L, Nohe A, Geissendorfer T, Sebald W, Henis YI, Knaus P (2000) Bone morphogenetic protein receptor complexes on the surface of live cells: a new oligomerization mode for serine, threonine kinase receptors. MolBiol Cell11: 1023–1035

    CAS  Google Scholar 

  62. Wrana JL, Attisano L, Cárcamo J, Zentella A, Doody J, Laiho M, Wang X-F, Massagué J (1992) TGF 13 signals through a heteromeric protein kinase receptor complex. Cell71:1003–1014

    Article  CAS  Google Scholar 

  63. Cárcamo J, Weis FM, Ventura F, Wieser R, Wrana JL, Attisano L, Massagué J (1994) Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor 13 and activin. MolCell Biol.14(6): 3810–3821.

    Google Scholar 

  64. Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massagué J (1998) Determinants of specificity in TGF-13 signal transduction.Genes Dev12: 2144–2152

    Article  CAS  Google Scholar 

  65. Feng X-H, Derynck R (1997) A kinase subdomain of transforming growth factor-3 (TGF-β) type I receptor determines the TGF-13 intracellular signaling specificity. EMBO J 16: 3912–3923

    Article  CAS  Google Scholar 

  66. Persson U, Izumi H, Souchelnytskyi S, Itoh S, Grimsby S, Engström U, Heldin C-H, Funa K, ten Dijke P (1998) The L45 loop in type I receptors for TGF-13 family members is a critical determinant in specifying Smad isoform activation.FEBS Lett434: 83–87

    Article  CAS  Google Scholar 

  67. Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA, Loyd JE, Nichols WC Trembath RC, Micheala A, Brannon CA (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-(3 receptor, cause familial primary pulmonary hypertensionNat Genet26: 81–84

    Article  CAS  Google Scholar 

  68. Machado RD, Pauciulo MW, Thomson JR, Lane KB, Morgan NV, Wheeler L, Phillips III, Newman J, Williams D, Galie N et al (2001) BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. AmJ Hum Genet68: 92–102

    Article  CAS  Google Scholar 

  69. Thomson JR, Machado RD, Pauciulo MW, Morgan NV, Humbert M, Elliott GC, Ward K, Yacoub M, Mikhail G, Rogers P (2000) Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family.J Med Genet37: 741–745

    Article  CAS  Google Scholar 

  70. Wilkins MR, Gibbs JS, Shovlin CL. (2000) A gene for primary pulmonary hypertensionLancet356: 1207–1208

    Article  CAS  Google Scholar 

  71. Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW (1996)Caenorhabditis elegansgenes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factorβpathway components.Proc Natl Acad Sci USA93: 790–794

    Article  CAS  Google Scholar 

  72. Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function inDrosophila melanogaster. Genetics139: 1347–1358

    CAS  Google Scholar 

  73. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA, Wrana JL (1997) The MAD-related protein Smad7 associates with the TGF(3 receptor and functions as an antagonist of TGFI3 signaling.Cell89: 1165–1173

    Article  CAS  Google Scholar 

  74. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J-I, Kawabata M, Miyazono K (1997) Smad6 inhibits signalling by the TGF-β superfamily.Nature389: 622–626

    Article  CAS  Google Scholar 

  75. Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin N-E, Heldin C-H et al (1997) Identification of Smad7, a TGF(3-inducible antagonist of TGF-β signalling.Nature389: 631–635

    Article  CAS  Google Scholar 

  76. Lo RS, Chen YG, Shi Y, Pavletich NP, Massagué J (1998) The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-13 receptors.EMBO J17:996–1005

    Article  CAS  Google Scholar 

  77. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGF13 receptor.Cell95: 779–791

    Article  CAS  Google Scholar 

  78. Miura S, Takeshita T, Asao H, Kimura Y, Murata K, Sasaki Y, Hanai JI, Beppu H, Tsukazaki T, Wrana JL et al (2000) Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA.Mol Cell Biol20: 9346–9355

    Article  CAS  Google Scholar 

  79. Abdollah S, Macías-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL (1997) T(3RI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling.J Biol Chem272: 27678–27685

    Article  CAS  Google Scholar 

  80. Kretzschmar M, Liu F, Hata A, Doody J, Massagué J (1997) The TGF-(3 family mediator Smadl is phosphorylated directly and activated functionally by the BMP receptor kinase.Genes Dev 11:984–995

    Article  CAS  Google Scholar 

  81. Macías-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL (1996) MADR2 is a substrate of the TGF(3 receptor and its phosphorylation is required for nuclear accumulation and signaling.Cell87: 1215–1224

    Article  Google Scholar 

  82. Souchelnytskyi S, Tamaki K, Engström U, Wernstedt C, ten Dijke P, Heldin C-H (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-13 signaling.J Biol Chem272: 28107–28115

    Article  CAS  Google Scholar 

  83. Ebisawa T, Tada K, Kitajima I, Tojo K, Sampath TK, Kawabata M, Miyazono K, Imamura T (1999) Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation.J Cell Sci112: 3519–3527

    CAS  Google Scholar 

  84. Nishimura R, Kato Y, Chen D, Harris SE, Mundy GR, Yoneda T (1998) Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12.J Biol Chem273: 1872–1879

    Article  CAS  Google Scholar 

  85. Tamaki K, Souchelnytskyi S, Itoh S, Nakao A, Sampath K, Heldin C-H, ten Dijke P (1998) Intracellular signaling of osteogenic protein-1 through Smad5 activation.J Cell Physiol177: 355–363

    Article  CAS  Google Scholar 

  86. Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J (1996) Partnership between DPC4 and SMAD proteins in TGF-13 signalling pathways.Nature383: 832–836

    Article  CAS  Google Scholar 

  87. Correia JJ, Chacko BM, Lam SS, Lin K (2001) Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homo-and hetero-trimerization.Biochemistry40: 1473–1482

    Article  CAS  Google Scholar 

  88. Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K (1998) Smad proteins exist as monomersin vivoand undergo homo-and hetero-oligomerization upon activation by serine, threonine kinase receptors. EMBOJ17: 4056–4065

    CAS  Google Scholar 

  89. Shi Y, Hata A, Lo RS, Massagué J, Pavletich NP (1997) A structural basis for mutational inactivation of the tumour suppressor Smad4.Nature388: 87–93

    Article  CAS  Google Scholar 

  90. Xiao Z, Liu X, Lodish HF (2000) Importin 13 mediates nuclear translocation of Smad3.J Biol Chem275: 23425–23428

    Article  CAS  Google Scholar 

  91. Xiao Z, Liu X, Henis YI, Lodish HF (2000) A distinct nuclear localization signal in the N terminus of Smad3 determines its ligand-induced nuclear translocation.Proc Natl Acad Sci USA97: 7853–7858

    Article  CAS  Google Scholar 

  92. Pierreux CE, Nicolas FJ, Hill CS (2000) Transforming growth factor 13-independent shuttling of Smad4 between the cytoplasm and nucleus.Mol Cell Biol20: 9041–9054

    Article  CAS  Google Scholar 

  93. Watanabe M, Masuyama N, Fukuda M, Nishida E (2000) Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal.EMBO Reports 1:176–182

    Article  CAS  Google Scholar 

  94. Massagué J, Wotton D (2000) Transcriptional control by the TGF-0, Smad signaling system. EMBO J 19: 1745–1754

    Article  Google Scholar 

  95. ten Dijke P, Miyazono K, Heldin C-H. (2000) Signaling inputs converge on nuclear effectors in TGF-0 signaling.Trends Biochem Sci25: 64–70

    Article  Google Scholar 

  96. Flanders KC, Kim ES, Roberts AB (2001) Immunohistochemical expression of smads 16 in the 15-day gestation mouse embryo: signaling by BMPs and TGF-13s.Dey Dyn220: 141–154

    Article  CAS  Google Scholar 

  97. Zhu H, Kaysak P, Abdollah S, Wrana JL, Thomsen GH (1999) A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation.Nature400: 687–693

    Article  CAS  Google Scholar 

  98. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF (3-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene.EMBO J17: 3091–3100

    Article  CAS  Google Scholar 

  99. Jonk LJ, Itoh S, Heldin C-H, ten Dijke P, Kruijer W (1998) Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-(3, activin, and bone morphogenetic protein-inducible enhancer.J Biol Chem273: 21145–21152

    Article  CAS  Google Scholar 

  100. Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT, Wang X-F (1997) Tumor suppressor Smad4 is a transforming growth factor 0-inducible DNA binding protein.Mol Cell Biol17: 7019–7028

    CAS  Google Scholar 

  101. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE (1998) Human Smad3 and Smad4 are sequence-specific transcription activators.Mol Cell1: 611–617

    Article  CAS  Google Scholar 

  102. Brodin G, Åhgren A, ten Dijke P, Heldin C-H, Heuchel R (2000) Efficient TGF-13 induction of the Smad7 gene requires cooperation between AP-1, Spl, and Smad proteins on the mouse Smad7 promoter.J Biol Chem275: 29023–29030

    Article  CAS  Google Scholar 

  103. Denissova NG, Pouponnot C, Long J, He D, Liu F (2000) Transforming growth factor 0-inducible independent binding of SMAD to the Smad7 promoter.Proc Natl Acad Sci USA97: 6397–6402

    Article  CAS  Google Scholar 

  104. Nagarajan RP, Zhang J, Li W, Chen Y (1999) Regulation of Smad7 promoter by direct association with Smad3 and Smad4.J Biol Chem274: 33412–33418

    Article  CAS  Google Scholar 

  105. Stopa M, Anhuf D, Terstegen L, Gatsios P, Gressner AM, Dooley S (2000) Participation of Smad2, Smad3, and Smad4 in transforming growth factorβ(TGF-0)-induced activation of Smad7. The TGF-I3 response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulationJ Biol Chem275: 29308–29317

    Article  CAS  Google Scholar 

  106. von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Bottinger EP (2000) Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor β.J Biol Chem275: 11320–11326

    Article  Google Scholar 

  107. Stroschein SL, Wang W, Luo K (1999) Cooperative binding of Smad proteins to two adjacent DNA elements in the plasminogen activator inhibitor-1 promoter mediates transforming growth factor (3-induced Smad-dependent transcriptional activation.J Biol Chem274: 9431–9441

    Google Scholar 

  108. Chen SJ, Yuan W, Lo S, Trojanowska M, Varga J (2000) Interaction of Smad3 with a proximal smad-binding element of the human a2(I) procollagen gene promoter required for transcriptional activation by TGF-(3.J Cell Physiol183: 381–392

    Google Scholar 

  109. Vindevoghel L, Lechleider RJ, Kon A, de Caestecker MP, Uitto J, Roberts AB, von Gersdorff G, Susztak K, Rezvani F, Bitzer M et al (2000) Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor P.J Biol Chem275: 11320–11326

    Google Scholar 

  110. Shi Y, Wang YF, Jayaraman L, Yang H, Massagué J, Pavletich NP (1998) Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-(3 signaling.Cell94: 585–594

    Article  CAS  Google Scholar 

  111. Henningfeld KA, Rastegar S, Adler G, Knochel W (2000) Smad1 and Smad4 are components of the bone morphogenetic protein-4 (BMP-4)-induced transcription complex of the Xvent-2B promoter.J Biol Chem275: 21827–21835

    Google Scholar 

  112. Ishida W, Hamamoto T, Kusanagi K, Yagi K, Kawabata M, Takehara K, Sampath TK, Kato M, Miyazono K (2000) Smad6 is a Smad1, 5-induced Smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter.J Biol Chem275: 6075–6079

    Article  CAS  Google Scholar 

  113. Kim J, Johnson K, Chen HJ, Carroll S, Laughon A (1997)DrosophilaMad binds to DNA and directly mediates activation of vestigial by Decapentaplegic.Nature388: 304–308

    Article  CAS  Google Scholar 

  114. Kusanagi K, Inoue H, Ishidou Y, Mishima HK, Kawabata M, Miyazono K (2000) Characterization of a bone morphogenetic protein-responsive Smad-binding element.Mol Biol Cell11: 555–565.

    CAS  Google Scholar 

  115. Yoshida Y, Tanaka S, Umemori H, Minowa 0, Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T (2000) Negative regulation of BMP, Smad signaling by Tob in osteoblasts.Cell103: 1085–1097

    Article  CAS  Google Scholar 

  116. Derynck R, Zhang Y, Feng X-H (1998) Smads: transcriptional activators of TGF-(3 responses.Cell95: 737–740

    Article  CAS  Google Scholar 

  117. Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, Massagué J (2000) OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways.Cell100: 229–240

    Article  CAS  Google Scholar 

  118. Hanai J-i, Chen LF, Kanno T, Ohtani-Fujita N, Kim WY, Guo WH, Imamura T, Ishidou Y, Fukuchi M, Shi MJ et al (1999) Interaction and functional cooperation of PEBP2, CBF with Smads. Synergistic induction of the immunoglobulin germline Ca promoter.J Biol Chem274: 31577–31582

    Article  Google Scholar 

  119. Pardali E, Xie XQ, Tsapogas P, Itoh S, Arvanitidis K, Heldin C-H, ten Dijke P, Grundstrom T, Sideras P (2000) Smad and AML proteins synergistically confer transforming growth factor β1 responsiveness to human germ-line IgA genes.J Biol Chem275: 3552–3560

    Article  CAS  Google Scholar 

  120. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M (1997) Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts.Cell89: 755–764

    Article  CAS  Google Scholar 

  121. Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development.Genes Dey13: 1025–1036

    Article  CAS  Google Scholar 

  122. Mundlos S, Mulliken JB, Abramson DL, Warman ML, Knoll JH, Olsen BR (1995) Genetic mapping of cleidocranial dysplasia and evidence of a microdeletion in one family.Hum Mol Genet4: 71–75

    CAS  Google Scholar 

  123. Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, Nogami H, Ochi T, Miyazono K, Ito Y (2000) A RUNX2, PEBP2aA, CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia.Proc Natl Acad Sci USA97: 10549–10554

    Article  CAS  Google Scholar 

  124. Liu F, Hata A, Baker JC, Doody J, Carcámo J, Harland RM, Massagué J (1996) A human Mad protein acting as a BMP-regulated transcriptional activator.Nature381: 620–623

    Article  CAS  Google Scholar 

  125. Meersseman G, Verschueren K, Nelles L, Blumenstock C, Kraft H, Wuytens G, Remade J, Kozak CA, Tylzanowski P, Niehrs C et al (1997) The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in theXenopusembryo and transcriptional activation.Mech Dey61: 127–140

    Article  CAS  Google Scholar 

  126. Pouponnot C, Jayaraman L, Massagué J (1998) Physical and functional interaction of SMADs and p300, CBP.J Biol Chem273: 22865–22868

    Article  CAS  Google Scholar 

  127. Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300.Science284: 479–482

    Article  CAS  Google Scholar 

  128. Massagué J, Chen YG (2000) Controlling TGF-beta signaling.Genes Dey14: 627–644

    Google Scholar 

  129. Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massagué J, Niehrs C (1999) Silencing of TGF-(3 signalling by the pseudoreceptor BAMBI.Nature401: 480–485

    Article  CAS  Google Scholar 

  130. Tsang M, Kim R, de Caestecker MP, Kudoh T, Roberts AB, Dawid IB (2000) Zebrafish nma is involved in TGF(3 family signaling.Genesis28: 47–57

    Article  CAS  Google Scholar 

  131. Kretzschmar M, Doody J, Massagué J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-(3 family mediator Smad1.Nature389: 618–622

    Article  CAS  Google Scholar 

  132. Ishisaki A, Yamato K, Hashimoto S, Nakao A, Tamaki K, Nonaka K, ten Dijke P, Sugino H, Nishihara T (1999) Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein-and activin-mediated growth arrest and apoptosis in B cells.J Biol Chem274: 13637–13642

    Article  CAS  Google Scholar 

  133. Kaysak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF(3 receptor for degradation.Mol Cell6: 1365–1375

    Article  Google Scholar 

  134. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor43 type I receptor through Smad7 and induces receptor degradation.J Biol Chem276: 12477–12480

    Article  CAS  Google Scholar 

  135. Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A (1998) Smad6 inhibits BMP, Smad1 signaling by specifically competing with the Smad4 tumor suppressor.Genes Dey12: 186–197

    Article  CAS  Google Scholar 

  136. Bai S, Shi X, Yang X, Cao X (2000) Smad6 as a transcriptional corepressor.J Biol Chem275: 8267–8270

    Article  CAS  Google Scholar 

  137. Kimura N, Matsuo R, Shibuya H, Nakashima K, Taga T (2000) BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. JBiol Chem275: 17647–17652

    Article  CAS  Google Scholar 

  138. Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q (1999) The Ski oncoprotein interacts with the Smad proteins to repress TGF(3 signaling.Genes Dey13: 2196–2206

    Article  CAS  Google Scholar 

  139. Wang W, Mariani FV, Harland RM, Luo K (2000) Ski represses bone morphogenic protein signaling inXenopusand mammalian cellsProc Natl Acad Sci USA97: 14394–14399

    Article  CAS  Google Scholar 

  140. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-13 signal transduction.Science270: 2008–2011

    Article  CAS  Google Scholar 

  141. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K (1999) XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1–TAK1 in the BMP signaling pathway. EMBOJ18: 179–187

    CAS  Google Scholar 

  142. Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S (1999) ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-f3 signaling.J Biol Chem274: 8949–8957

    Article  CAS  Google Scholar 

  143. Nakamura K, Shirai T, Morishita S, Uchida S, Saeki-Miura K, Makishima F (1999) p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth, differentiation factor-5 in ATDCS cells.Exp Cell Res250: 351–363

    Article  CAS  Google Scholar 

  144. Ahrens M, Ankenbauer T, Schroder D, Hollnagel A, Mayer H, Gross G (1993) Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1, 2 cells induces differentiation into distinct mesenchymal cell lineages.DNA Cell Biol12: 871–880

    CAS  Google Scholar 

  145. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage.J Cell Biol127: 1755–1766

    Article  CAS  Google Scholar 

  146. Maliakal JC, Asahina I, Hauschka PV, Sampath TK (1994) Osteogenic protein-1 (BMP-7) inhibits cell proliferation and stimulates the expression of markers characteristic of osteoblast phenotype in rat osteosarcoma (17, 2.8) cells.Growth Factors 11:227–234

    Article  CAS  Google Scholar 

  147. Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM et al (2000) Runx2 is a common target of transforming growth factor 131 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12.Mol Cell Biol20: 8783–8792

    Article  CAS  Google Scholar 

  148. Shi X, Yang X, Chen D, Chang Z, Cao X (1999) Smadl interacts with homeobox DNA-binding proteins in bone morphogenetic protein signaling.J Biol Chem274: 13711–13717

    Article  CAS  Google Scholar 

  149. Yang X, Ji X, Shi X, Cao X (2000) Smad1 domains interacting with Hoxc-8 induce osteoblast differentiation.J Biol Chem275: 1065–1072

    Article  CAS  Google Scholar 

  150. Hullinger TG, Pan Q, Viswanathan HL, Somerman MJ (2001) TGF13 and BMP-2 activation of the OPN promoter: roles of Smad-and Hox-binding elements.Exp Cell Res262: 69–74

    Article  CAS  Google Scholar 

  151. Wan M, Shi X, Feng X, Cao X (2001) Transcriptional mechanisms of BMP-induced osteoprotegrin gene expression.J Biol Chem276: 10119–10125

    Article  CAS  Google Scholar 

  152. Nakanishi T, Kimura Y, Tamura T, Ichikawa H, Yamaai Y, Sugimoto T, Takigawa M (1997) Cloning of a mRNA preferentially expressed in chondrocytes by differential display-PCR from a human chondrocytic cell line that is identical with connective tissue growth factor (CTGF) mRNA.Biochem Biophys Res Commun234: 206–210

    Article  CAS  Google Scholar 

  153. Nishida T, Nakanishi T, Asano M, Shimo T, Takigawa M (2000) Effects of CTGF, Hcs24, a hypertrophie chondrocyte-specific gene product, on the proliferation and differentiation of osteoblastic cellsin vitro. J Cell Physiol184: 197–206

    Article  CAS  Google Scholar 

  154. Afrakhte M, Morén A, Jossan S, Itoh S, Sampath K, Westermark B, Heldin C-H, Heldin N-E, ten Dijke P (1998) Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members.Biochem Biophys Res Commun249: 505–511

    Article  CAS  Google Scholar 

  155. Takase M, Imamura T, Sampath TK, Takeda K, Ichijo H, Miyazono K, Kawabata M. (1998) Induction of Smad6 mRNA by bone morphogenetic proteins.Biochem Biophys Res Commun244: 26–29

    Article  CAS  Google Scholar 

  156. Chalaux E, Lopez-Rovira T, Rosa JL, Bartrons R, Ventura F (1998) JunB is involved in the inhibition of myogenic differentiation by bone morphogenetic protein-2.J Biol Chem273: 537–543

    Article  CAS  Google Scholar 

  157. Hollnagel A, Oehlmann V, Heymer J, Ruther U, Nordheim A (1999) Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells.J Biol Chem274: 19838–19845

    Article  CAS  Google Scholar 

  158. Ogata T, Wozney JM, Benezra R, Noda M (1993) Bone morphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helixloop-helix molecule in osteoblast-like cells.Proc Natl Acad Sci USA90: 9219–9222

    Article  CAS  Google Scholar 

  159. Moldes M, Lasnier F, Feve B, Pairault J, Djian P (1997) Id3 prevents differentiation of preadipose cells.Mol Cell Biol17: 1796–1804

    CAS  Google Scholar 

  160. Jen Y, Weintraub H, Benezra R (1992) Overexpression of Id protein inhibits the muscle differentiation program:in vivoassociation of Id with E2A proteins.Genes Dev6: 1466–1479

    Article  CAS  Google Scholar 

  161. Melnikova IN, Christy BA (1996) Muscle cell differentiation is inhibited by the helixloop-helix protein Id3.Cell Growth Differ7: 1067–1079

    CAS  Google Scholar 

  162. Miyama K, Yamada G, Yamamoto TS, Takagi C, Miyado K, Sakai M, Ueno N, Shibuya H (1999) A BMP-inducible gene, dlx5, regulates osteoblast differentiation and mesoderm induction.Dev Biol208: 123–133

    Article  CAS  Google Scholar 

  163. Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, Bober E, Barbieri O, Simeone A, Levi G (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene DIxS.Development126: 3795–3809

    CAS  Google Scholar 

  164. Sirard C, Kim S, Mirtsos C, Tadich P, Hoodless PA, Itie A, Maxson R, Wrana JL, Mak TW (2000) Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor 13-related signaling.J Biol Chem275: 2063–2070

    Article  CAS  Google Scholar 

  165. Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S et al (2000) Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation.Nat Genet24: 391–395

    Article  CAS  Google Scholar 

  166. Service RF (2000) Tissue engineers build new bone.Science289: 1498–1500

    Article  CAS  Google Scholar 

  167. Franceschi RT, Wang D, Krebsbach PH, Rutherford RB (2000) Gene therapy for bone formation:in vitroandin vivoosteogenic activity of an adenovirus expressing BMP7.J Cell Biochem78: 476–486

    Article  CAS  Google Scholar 

  168. Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA, McCauley LK, Davidson BL, Roessler BJ (1996) Stimulation of new bone formation by direct transfer of osteogenic plasmid genes.Proc Natl Acad Sci USA93: 5753–5758

    Article  CAS  Google Scholar 

  169. Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion, chorion and cardiac development.Development122: 2977–2986

    CAS  Google Scholar 

  170. Solloway MJ, Dudley AT, Bikoff EK, Lyons KM, Hogan BL, Robertson EJ (1998) Mice lacking Bmp6 function.Dev Genet22: 321–339

    Article  CAS  Google Scholar 

  171. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning.Genes Dev9: 2808–2820

    Article  CAS  Google Scholar 

  172. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye.Genes Dev9: 2795–2807

    Article  CAS  Google Scholar 

  173. Solloway MJ, Robertson EJ (1999) Early embryonic lethality in BmpS;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup.Development126: 1753–1768

    CAS  Google Scholar 

  174. Zhao GQ, Deng K, Labosky PA, Liaw L, Hogan BL (1996) The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse.Genes Dev10: 1657–1669

    Article  CAS  Google Scholar 

  175. Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG, Montgomery GW et al (2000) Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner.Nat Genet25: 279–283

    Article  CAS  Google Scholar 

  176. Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A., Schwartz L, Kern SE et al (1998) The tumor suppressor gene Smad4, Dpc4 is required for gastrulation and later for anterior development of the mouse embryo.Genes Dev12: 107–119

    Article  CAS  Google Scholar 

  177. Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A (1999) SmadS knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects.Development126: 1631–1642

    CAS  Google Scholar 

  178. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C et al (1996) Increased bone formation in osteocalcin-deficient mice.Nature382: 448–452

    Article  CAS  Google Scholar 

  179. Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL (1998) Altered wound healing in mice lacking a functional osteopontin gene (sppl).J Clin Invest101: 1468–1478

    CAS  Google Scholar 

  180. Yoshitake H, Riffling SR, Denhardt DT, Noda M (1999) Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption.Proc Natl Acad Sci USA96: 8156–8160

    Article  CAS  Google Scholar 

  181. Willing MC, Pruchno CJ, Atkinson M, Byers PH (1992) Osteogenesis imperfecta type I is commonly due to a COL1A1 null allele of type I collagen. AmJ Hum Genet51: 508–515

    CAS  Google Scholar 

  182. Chen D, Harris MA, Rossini G, Dunstan CR, Dallas SL, Feng JQ, Mundy GR, Harris SE (1997) Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in cultures of fetal rat calvarial osteoblasts.Calcif Tissue Int60: 283–290

    Article  CAS  Google Scholar 

  183. Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, Narisawa S, Millan JL, MacGregor GR et al (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia.J Bone Miner Res14: 2015–2026

    Article  CAS  Google Scholar 

  184. Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH, Gimbrone MA et al (2000) A role for smad6 in development and homeostasis of the cardiovascular system.Nat Genet24: 171–174

    Article  CAS  Google Scholar 

  185. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts.Nature401: 670–677

    Article  CAS  Google Scholar 

  186. Schorpp-Kistner M, Wang ZQ, Angel P, Wagner EF (1999) JunB is essential for mammalian placentation. EMBOJ18: 934–948

    CAS  Google Scholar 

  187. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2, Cbfa1: a transcriptional activator of osteoblast differentiation.Cell89: 747–754

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Korchynsky, O., Dijke, P.t. (2002). Bone morphogenetic protein receptors and their nuclear effectors in bone formation. In: Vukicevic, S., Sampath, K.T. (eds) Bone Morphogenetic Proteins. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8121-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8121-0_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9446-3

  • Online ISBN: 978-3-0348-8121-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics