Skip to main content

Electrophysiological characteristics of injured peripheral nerves

  • Chapter
Mechanisms and Mediators of Neuropathic Pain

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Injury of a peripheral nerve interrupts the centripetal action potential conduction in axons of many sensory neurons. Since it is the peripheral, receptive ending that is the only part of the sensory neuron specialised for action potential generation under normal conditions, one would expect proximal parts of sensory neurons to become and remain silent following injury. Consequently, patients with peripheral nerve lesions should complain of sensory deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett GJ (1994) Neuropathic pain. In: PD Wall, R Melzack (eds): Textbook of pain. Churchill Livingstone, Edinburgh, 201–224

    Google Scholar 

  2. Wall PD, Waxman S, Basbaum AI (1974) Ongoing activity in peripheral nerve: injury discharge. Exp Neurol 45: 576–589

    Article  PubMed  CAS  Google Scholar 

  3. Blenk K-H, Jänig W, Michaelis M, Vogel C (1996) Prolonged injury discharge in unmyelinated nerve fibres following transection of the sural nerve in rats. Neurosci Lett 215: 185–188

    Article  PubMed  CAS  Google Scholar 

  4. Chung JM, Leem JW, Kim SH (1992) Somatic afferent fibers which continuously dis-charge after being isolated from their receptors. Brain Res 599: 29–33

    Article  PubMed  CAS  Google Scholar 

  5. Spira ME, Benbassat D, Dormann A (1993) Resealing of the proximal and distal cut ends of transected axons: electrophysiological and ultrastructural analysis. J Neurobiol 24: 300–316

    Article  PubMed  CAS  Google Scholar 

  6. Seltzer Z, Beilin B, Ginzburg R, Paran Y, Shimko T (1991) The role of injury discharge in the induction of neuropathic pain behavior in rats. Pain 46: 327–336

    Article  PubMed  CAS  Google Scholar 

  7. Dougherty PM, Garrison CJ, Carlton SM (1992) Differential influence of local anes-thetic upon two models of experimentally induced peripheral mononeuropathy in the rat. Brain Res 570: 109–115

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto T, Shimoyama N, Mizuguchi T (1993) Role of the injury discharge in the development of thermal hyperesthesia after sciatic nerve constriction injury in the rat.

    Google Scholar 

  9. Bach S, Noreng MF, Tjellden NU (1988) Phantom limb pain in amputees during the first 12 month following limb amputation, after preoperative lumbar epidural blockade. Pain 33: 297–301

    Article  PubMed  CAS  Google Scholar 

  10. Nikolajsen L, Ilkjaer S, Christensen JH, Kroner K, Jensen TS (1997) Randomised trial of epidural bupivacaine and morphine in prevention of stump and phantom pain in lower-limb amputation Lancet 350: 1353–1357

    Article  PubMed  CAS  Google Scholar 

  11. Warncke T, Stubhaug A, Jorum E (2000) Preinjury treatment with morphine or ketamine inhibits the development of experimentally induced secondary hyperalgesia in man. Pain 86: 293–303

    Article  PubMed  CAS  Google Scholar 

  12. Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13: 43–60

    Article  PubMed  CAS  Google Scholar 

  13. Wall PD, Gutnick M (1974) Properties of afferent nerve impulses originating from a neuroma. Nature 248: 740–743

    Article  PubMed  CAS  Google Scholar 

  14. Scadding JW (1981) Development of ongoing activity, mechanosensitivity, and adrenaline sensitivity in severed peripheral nerve axons. Exp Neurol 73: 345–364

    Article  PubMed  CAS  Google Scholar 

  15. Burchiel KJ (1984) Effects of electrical and mechanical stimulation on two foci of spontaneous activity which develop in primary afferent neurons after peripheral axotomy. Pain 18: 249–265

    Article  PubMed  CAS  Google Scholar 

  16. Blumberg H, Jänig W (1984) Discharge pattern of afferent fibers from a neuroma. Pain 20: 335–353

    Article  PubMed  CAS  Google Scholar 

  17. Meyer RA, Raja SN, Campbell JN, Mackinnon SE, Dellon AL (1985) Neural activity originating from a neuroma in the baboon. Brain Res 325: 255–260

    Article  PubMed  CAS  Google Scholar 

  18. Welk E, Leah JD, Zimmermann M (1990) Characteristics of A- and C-fibers ending in a sensory nerve neuroma in the rat. J Neurophysiol 63: 759–766

    PubMed  CAS  Google Scholar 

  19. Koschorke GM, Meyer RA, Tillman DB, Campbell JN (1991) Ectopic excitability of injured nerves in monkey: entrained responses to vibratory stimuli. J Neurophysiol 65: 693–701

    PubMed  CAS  Google Scholar 

  20. Proske U, Iggo A, Luff AR (1995) Mechanical sensitivity of regenerating myelinated skin and muscle afferents in the cat. Exp Brain Res 104: 89–98

    Article  PubMed  CAS  Google Scholar 

  21. Michaelis M, Blenk K-H, Jänig W, Vogel C (1995) Development of spontaneous activity and mechanosensitivity in axotomized afferent nerve fibers during the first hours after nerve transection in rats. J Neurophysiol 74: 1020–1027

    PubMed  CAS  Google Scholar 

  22. Babbedge RC, Soper AJ, Gentry CT, Hood VC, Campbell EA, Urban L (1996) In vitro characterization of a peripheral afferent pathway of the rat after chronic sciatic nerve section. J Neurophysiol 76: 3169–3177

    Google Scholar 

  23. Bongenhielm U, Robinson PP (1996) Spontaneous and mechanically evoked afferent activity originating from myelinated fibres in ferret inferior alveolar nerve neuromas. Pain 67: 399–406

    Article  PubMed  CAS  Google Scholar 

  24. Tal M, Eliav E (1996) Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat. Pain 64: 511–518

    Article  PubMed  CAS  Google Scholar 

  25. Chen Y, Devor M (1998) Ectopic mechanosensitivity in injured sensory axons arises from the site of spontaneous electrogenesis. Eur J Pain 2: 165–178

    Article  PubMed  Google Scholar 

  26. Bongenhielm U, Robinson PP (1998) Afferent activity from myelinated inferior alveolar nerve fibers in ferrets after constriction or section and regeneration. Pain 74: 123–132

    Article  PubMed  CAS  Google Scholar 

  27. Hu SJ, Xing JL (1998) An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. Pain 77: 15–23

    Article  PubMed  CAS  Google Scholar 

  28. Koschorke GM, Meyer RA, Campbell JN (1994) Cellular components necessary for mechanoelectrical transduction are conveyed to primary afferent terminals by fast axonal transport. Brain Res 641: 99–104

    Article  PubMed  CAS  Google Scholar 

  29. Nordin M, Nyström B, Wallin U, Hagbarth KE (1984) Ectopic sensory discharges and paresthesiae in patients with disorders of peripheral nerves, dorsal roots and dorsal columns. Pain 20: 231–245

    Article  PubMed  CAS  Google Scholar 

  30. Blenk K-H, Michaelis M, Vogel C, Jänig W (1996) Thermosensitivity of acutely axotomized sensory nerve fibers. J Neurophysiol 76: 743–752

    PubMed  CAS  Google Scholar 

  31. Zimmermann M, Sanders K (1982) Responses of nerve axons and receptor endings to heat, ischemia and algesic substances. Abnormal excitability of regenerating nerve endings. In: WJ Culp, J Ochoa (eds): Abnormal nerves and muscles as impulse generators. Oxford University Press, Oxford, 513–532

    Google Scholar 

  32. Matzner O, Devor M (1987) Contrasting thermal sensitivity of spontaneously active A-and C-fibers in experimental nerve-end neuromas. Pain 30: 373–384

    Article  PubMed  CAS  Google Scholar 

  33. Hartung M, Leah J, Zimmermann M (1989) The excitation of cutaneous nerve endings in a neuroma by capsaicin. Brain Res 499: 363–366

    Article  PubMed  CAS  Google Scholar 

  34. Devor M, White DM, Goetzl EJ, Levine JD (1992) Eicosanoids, but not tachykinins, excite C-fiber endings in rat sciatic nerve-end neuromas. NeuroRep 3: 21–24

    Article  CAS  Google Scholar 

  35. Michaelis M, Vogel C, Blenk K-H, Jänig W (1997) Algesics excite axotomized afferent nerve fibres within the first hours following nerve transection in rats. Pain 72: 347–354

    Article  PubMed  CAS  Google Scholar 

  36. Michaelis M, Vogel C, Blenk K-H, Arnarson A, Jänig W (1998) Inflammatory mediators sensitize acutely axotomized nerve fibers to mechanical stimulation in the rat. J Neurosci 18: 7581–7587

    PubMed  CAS  Google Scholar 

  37. Arnarson A, Michaelis M, Jänig W (1999) Sensitizing effect of bradykinin on ectopic mechanical and thermal sensitivity in axotomized afferent nerve fibers. Pflügers Arch Suppl 437: R129 (Abstract)

    Google Scholar 

  38. Becker S, Reeh PW, Michaelis M (1999) Thermosensitivity of axotomized cutaneous afferents and the sensitizing effect of bradykinin, in vitro. In: Abstracts of the 9th World Congress on Pain, 31 (Abstract)

    Google Scholar 

  39. Mayes TJ, Pechman PS, Gebhart GF, Meller ST (1993) Possible chemical contribution from chromic gut sutures produces disorders of pain sensation like those seen in man. Pain 54: 57–69

    Article  Google Scholar 

  40. Clatworthy AL, Illich PA, Castro GA, Walters ET (1995) Role of periaxonal inflammation in the development of thermal hyperalgesia and guarding behavior in a rat model of neuropathic pain. Neurosci Lett 184: 5–8

    Article  PubMed  CAS  Google Scholar 

  41. Ren K, Thomas DA, Dubner R (1995) Nerve growth factor alleviates a painful peripheral neuropathy in rats. Brain Res 699: 286–292

    Article  PubMed  CAS  Google Scholar 

  42. Siuciak JA, Lewis D, Lindsay R (1996) Blockade of NGF hyperalgesia with trkA-IgG receptor body. Pain 8: 120 (Abstract)

    Google Scholar 

  43. Jänig W, Koltzenburg M (1992) Possible ways of sympathetic afferent interaction. In: W Jänig, RF Schmidt (eds): Reflex sympathetic dystrophy. Pathophysiological mechanisms and clinical implications. VCH Verlagsgesellschaft, Weinheim, New York, 213–243

    Google Scholar 

  44. Torebjörk E, Wahren LK, Wallin G, Hallin R, Koltzenburg M (1995) Noradrenalineevoked pain in neuralgia. Pain 63: 11–20

    Article  PubMed  Google Scholar 

  45. Devor M, Jänig W (1981) Activation of myelinated afferents ending in a neuroma by stimulation of the sympathetic supply in the rat. Neurosci Lett 24: 43–47

    Article  PubMed  CAS  Google Scholar 

  46. Burchiel KJ (1984) Spontaneous impulse generation in normal and denervated dorsal root ganglia: sensitivity to alpha-adrenergic stimulation and hypoxia. Exp Neurol 85: 257–272

    Article  PubMed  CAS  Google Scholar 

  47. Chen Y, Michaelis M, Jänig W, Devor M (1996) Adrenoceptor subtype mediating sympathetic-sensory coupling in injured sensory neurons. J Neurophysiol 76: 3721–3730

    PubMed  CAS  Google Scholar 

  48. Rubin G, Kaspi T, Rappaport ZH, Cohen S, Ravikovitch M, Lomazov P, Devor M (1997) Adrenosensitivity of injured afferent neurons does not require the presence of postganglionic sympathetic terminals. Pain 72: 183–191

    Article  PubMed  CAS  Google Scholar 

  49. Chabal C, Jacobson L, Russell LC, Burchiel KJ (1992) Pain response to perineuromal injection of normal saline, epinephrine, and lidocaine in humans. Pain 49: 9–12

    Article  PubMed  CAS  Google Scholar 

  50. Sato J, Perl ER (1991) Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science 251: 1608–1610

    Article  PubMed  CAS  Google Scholar 

  51. Bossut DF, Perl ER (1995) Effects of nerve injury on sympathetic excitation of AS mechanical nociceptors. J Neurophysiol 73: 1721–1723

    PubMed  CAS  Google Scholar 

  52. O’Halloran KD, Perl ER (1997) Effects of partial nerve injury on the responses of C-fiber polymodal nociceptors to adrenergic agonists. Brain Res 759: 233–240

    Article  PubMed  Google Scholar 

  53. Ali Z, Ringkamp M, Hartke TV, Chien HF, Flavahan NA, Campbell JN, Meyer RA (1999) Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol 81: 455–466

    PubMed  CAS  Google Scholar 

  54. McLachlan EM, Jänig W, Devor M, Michaelis M (1993) Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature 363: 543–546

    Article  PubMed  CAS  Google Scholar 

  55. Devor M, Jänig W, Michaelis M (1994) Modulation of activity in dorsal root ganglion (DRG) neurons by sympathetic activation in nerve-injured rats. J Neurophysiol 71: 38–47

    PubMed  CAS  Google Scholar 

  56. Xie Y, Zhang J, Petersen M, LaMotte RH (1995) Functional changes in dorsal root ganglion cells after chronic nerve constriction in the rat. J Neurophysiol 73: 1811–1820

    PubMed  CAS  Google Scholar 

  57. Zhang JM, Song XJ, LaMotte RH (1997) An in vitro study of ectopic discharge generation and adrenergic sensitivity in the intact, nerve-injured rat dorsal root ganglion. Pain 72: 51–57

    Article  PubMed  CAS  Google Scholar 

  58. Liu X, Chung K, Chung JM (1999) Ectopic discharges and adrenergic sensitivity of sensory neurons after spinal nerve injury. Brain Res 849: 244–247

    Article  PubMed  CAS  Google Scholar 

  59. Häbler H-J, Eschenfelder S, Brinker H, Grunow B, Jänig W, Liu X-G (2000) Neurogenic vasoconstriction in the dorsal root ganglion may play a crucial role in sympathetic-afferent coupling after peripheral nerve injury. In: M Devor, M Rowbotham, Z WiesenfeldHallin (eds): Proceedings of the 9th world congress on pain. IASP Press, Seattle, 661–667

    Google Scholar 

  60. Michaelis M (2000) Coupling of sympathetic and somatosensory neurons following nerve injury: mechanisms and potential significance for the generation of pain. In: M Devor, M Rowbotham, Z Wiesenfeld-Hallin (eds): Proceedings of the 9th world congress on pain. IASP Press, Seattle, 645–656

    Google Scholar 

  61. Devor M, Govrin-Lippmann R, Angelides K (1993) Na channel immunolocalization in peripheral mammalian axons and changes following nerve injury and neuroma formation. J Neuroscience 13: 1976–1992

    CAS  Google Scholar 

  62. Novakovic SD, Tzoumaka E, McGivern JG, Haraguchi M, Sangameswaran L, Gogas KR, Eglen RM, Hunter JC (1998) Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci 18: 2174–2187

    PubMed  CAS  Google Scholar 

  63. England JD, Happel LT, Kline DG, Gamboni F, Thouron CL, Liu ZP, Levinson SR (1996) Sodium channel accumulation in humans with painful neuromas. Neurology 47: 272–276

    Article  PubMed  CAS  Google Scholar 

  64. Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P (2000) Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 85: 41–50

    Article  PubMed  CAS  Google Scholar 

  65. Devor M (1983) Nerve pathophysiology and mechanisms of pain in causalgia. J Auton Nery Syst 7: 371–384

    Article  CAS  Google Scholar 

  66. Proske U, Luff AR (1998) Mechanical sensitivity of muscle afferents in a nerve treated with colchicine. Exp Brain Res 119: 391–398

    Article  PubMed  CAS  Google Scholar 

  67. Leem JW, Willis WD, Chung JM (1993) Cutaneous sensory receptors in the rat foot. J Neurophysiol 69: 1684–1699

    PubMed  CAS  Google Scholar 

  68. Johnson RD, Munson JB (1991) Regenerating sprouts of axotomized cat muscle afferents express characteristic firing patterns to mechanical stimulation. J Neurophysiol 66: 2155–2158

    PubMed  CAS  Google Scholar 

  69. Lewin GR, McMahon SB (1991) Physiological properties of primary sensory neurons appropriately and inappropriately innervating skeletal muscle in adult rats. J Neurophysiol 66: 1218–1231

    PubMed  CAS  Google Scholar 

  70. Lewin GR, McMahon SB (1991) Physiological properties of primary sensory neurons appropriately and inappropriately innervating skin in the adult rat. J Neurophysiol 66: 1205–1217

    PubMed  CAS  Google Scholar 

  71. Devor M, Keller CH, Ellisman MH (1990) Spontaneous discharge of afferents in a neu-roma reflects original receptor tuning. Brain Res 517: 245–250

    Article  PubMed  CAS  Google Scholar 

  72. Michaelis M, Blenk KH, Vogel C, Jänig W (1999) Distribution of sensory properties among axotomized cutaneous C-fibres in adult rats. Neuroscience 94: 7–10

    Article  PubMed  CAS  Google Scholar 

  73. Campbell JN, Meyer RA, Raja SN (1992) Is nociceptor activation by alpha-1 adrenoreceptors the culprit in sympathetically maintained pain? APS J 1: 3–11

    Article  Google Scholar 

  74. Perl ER (1994) A re-evaluation of mechanisms leading to sympathetically related pain. In: HL Fields, JC Liebeskind (eds): Pharmacological approaches to the treatment of chronic pain:new concepts and critical issues. Progress in Pain Research and Management, Vol. 1. IASP Press, Seattle, 129–150

    Google Scholar 

  75. Perl ER (1999) Causalgia, pathological pain, and adrenergic receptors. Proc Natl Acad Sci USA 96: 7664–7667

    Article  PubMed  CAS  Google Scholar 

  76. Yaksh TL (1985) Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav 22: 845–858

    Article  PubMed  CAS  Google Scholar 

  77. Korenman EM, Devor M (1981) Ectopic adrenergic sensitivity in damaged peripheral nerve axons in the rat. Exp Neurol 72: 63–81

    Article  PubMed  CAS  Google Scholar 

  78. Govrin-Lippmann R, Devor M (1978) Ongoing activity in severed nerves: source and variation with time. Brain Res 159: 406–410

    Article  PubMed  CAS  Google Scholar 

  79. Tal M, Wall PD, Devor M (1999) Myelinated afferent fiber types that become spontaneously active and mechanosensitive following nerve transection in the rat. Brain Res 824: 218–223

    Article  PubMed  CAS  Google Scholar 

  80. Wall PD, Devor M (1983) Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 17: 321–339

    Article  PubMed  CAS  Google Scholar 

  81. Devor M, Wall PD (1990) Cross-excitation in dorsal root ganglia of nerve-injured and intact rats. J Neurophysiol 64: 1733–1746

    PubMed  CAS  Google Scholar 

  82. Michaelis M, Devor M, Jänig W (1996) Sympathetic modulation of activity in dorsal root ganglion neurons changes over time following peripheral nerve injury. J Neurophysiol 76: 753–763

    PubMed  CAS  Google Scholar 

  83. Kajander KC, Wakisaka S, Bennett GJ (1992) Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci Lett 138: 225–228

    Article  PubMed  CAS  Google Scholar 

  84. Petersen M, Zhang J, Zhang J-M, LaMotte RH (1996) Abnormal spontaneous activity and responses to norepinephrine in dissociated dorsal root ganglion cells after chronic nerve constriction. Pain 67: 391–397

    Article  PubMed  CAS  Google Scholar 

  85. Study RE, Kral MG (1996) Spontaneous action potential activity in isolated dorsal root ganglion neurons from rats with a painful neuropathy. Pain 65: 235–242

    Article  PubMed  CAS  Google Scholar 

  86. Liu X, Eschenfelder S, Blenk K-H, Jänig W, Häbler H (2000) Spontaneous activity of axotomized afferent neurons after L5 spinal nerve injury in rats. Pain 84: 309–318

    Article  PubMed  CAS  Google Scholar 

  87. Han HC, Lee DH, Chung JM (2000) Characteristics of ectopic discharges in rat neuropathic pain model. Pain 84: 253–261

    Article  PubMed  CAS  Google Scholar 

  88. Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M (2000) Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 85: 503–521

    Article  PubMed  CAS  Google Scholar 

  89. Michaelis M, Liu X, Jänig W (2000) Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesion. J Neurosci 20: 2742–2748

    PubMed  CAS  Google Scholar 

  90. DeSantis M, Duckworth JW (1982) Properties of primary afferent neurons from muscle which are spontaneously active after a lesion of their peripheral processes. Exp Neurol 75: 261–274

    Article  PubMed  CAS  Google Scholar 

  91. Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol Lond 363: 403–417

    PubMed  CAS  Google Scholar 

  92. Torebjörk HE, Ochoa JL, Schady W (1984) Referred pain from intraneural stimulation of muscle fascicles in the median nerve. Pain 18: 145–156

    Article  PubMed  Google Scholar 

  93. Laursen RJ, Graven-Nielsen T, Jensen TS, Arendt-Nielsen L (1999) The effect of compression and regional anaesthetic block on referred pain intensity in humans. Pain 80: 257–263

    Article  PubMed  CAS  Google Scholar 

  94. Wall PD, Woolf CJ (1984) Muscle but not cutaneous C-afferent input produces prolonged increases in excitability of the flexion reflex in the rat. J Physiol Lond 356: 443–458

    PubMed  CAS  Google Scholar 

  95. Michael GJ, Averill S, Shortland PJ, Yan Q, Priestley JV (1999) Axotomy results in major changes in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei. Eur J Neurosci 11: 3539–3551

    Article  PubMed  CAS  Google Scholar 

  96. Zhou XF, Chie ET, Deng YS, Zhong JH, Xue Q, Rush RA, Xian CJ (1999) Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat. Neuroscience 92: 841–853

    Article  PubMed  CAS  Google Scholar 

  97. Mannion RJ, Costigan M, Decosterd I, Amaya F, Ma QP, Holstege JC, Ji RR, Acheson A, Lindsay RM, Wilkinson GA et al (1999) Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci USA 96: 9385–9390

    Article  PubMed  CAS  Google Scholar 

  98. Kerr BJ, Bradbury EJ, Bennett DL, Trivedi PM, Dassan P, French J, Shelton DB, McMahon SB, Thompson SW (1999) Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci 19: 5138–5148

    PubMed  CAS  Google Scholar 

  99. McMahon SB, Bennett DLH (1999) Trophic factors and pain. In: PD Wall, R Melzack (eds): Textbook of pain. Churchill Livingstone, Edinburgh, 105–128

    Google Scholar 

  100. Amir R, Michaelis M, Devor M (1999) Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain. J Neurosci 19: 8589–8596

    PubMed  CAS  Google Scholar 

  101. Liu C-N, Michaelis M, Amir R, Devor M (2000) Spinal nerve injury enhances subthreshold membrane potential oscillations in DRG neurons: relation to neuropathic pain. J Neurophysiol 84: 205–215

    PubMed  CAS  Google Scholar 

  102. Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci USA 93: 15435–1543

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Michaelis, M. (2002). Electrophysiological characteristics of injured peripheral nerves. In: Malmberg, A.B., Chaplan, S.R. (eds) Mechanisms and Mediators of Neuropathic Pain. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8129-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8129-6_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9448-7

  • Online ISBN: 978-3-0348-8129-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics