Skip to main content

Abstract

The ‘ring cavity problem’ of nonlinear laser optics describes the behavior of a laser beam which propagates through a ‘bistable optical cavity’; this is a ring resonator system consisting of a nonlinear dielectric medium (of length ℓ), and several partially transmitting mirrors including an input and an output mirror. During one ring circulation, the propagating laser beam enters the nonlinear medium, emerges, is partially transmitted through the output mirror, is partially fed back around the circuit mirror system to the entry point at the input mirror, and added there to the input pump field beam. The system describes the spatial modulation and filtration of laser beams in order to achieve ‘memory’. The appearance of a wide range of spontaneously emerging spatial coherent structures (‘filaments’) is of practical importance in laser optics where the physical control of these structures has led to new and natural methods for information processing (‘pixel transfer’), as well as a theoretical model of a route to chaos and turbulence; for the physical background see references [3]–[11], [13]–[18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Browder, Another generalization of the Schauder fixed point theorem, Duke Math. J. 32 (1965), 399–406.

    Article  MathSciNet  MATH  Google Scholar 

  2. R.D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl. 101 (1974), 263–306.

    Article  MathSciNet  MATH  Google Scholar 

  3. A.J. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion, Springer-Verlag, Berlin 1983.

    MATH  Google Scholar 

  4. D.W. McLaughlin, J.V. Moloney, A.C. Newell, Solitary waves as fixed points of infinite-dimensional maps for an optical bistable ring cavity. Fluid and plasmas: Geometry and dynamics, Proc. Conference Boulder, Colorado 1983; Contemp. Math. Vol. 28, 369-376, AMS, Providence, RI 1984.

    Google Scholar 

  5. S.M. Hammel, C.K.R.T. Jones, J.V. Moloney, Global dynamical behavior of the optical field in a ring cavity, J. Opt. Soc. Am. B 2, no.4 (1985), 552–564.

    Article  Google Scholar 

  6. D.W. McLaughlin, J.V. Moloney, A.C. Newell, New class of instabilities in passive optical cavities. Phys. Rev. Lett. 54 (1985), 681–684.

    Article  Google Scholar 

  7. H.M. Gibbs, Optical Bistabilty: Controlling Light with Light, Academic Press, London 1985.

    Google Scholar 

  8. A. Aceves, H. Adachihara, C. Jones, J.C. Lerman, D.W. McLaughlin, J.V. Moloney, A.C. Newell, Chaos and coherent structures in partial differential equations, Physica D 18 (1986), 85–112.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.V. Moloney, Plane wave modulational instabilities in passive optical resonators. Nonlinear phenomena and chaos. Malvern Phys. Ser., Vol. 2, 214–245, Hilger, Bristol 1986.

    Google Scholar 

  10. J.V. Moloney, H. Adachihara, D.W. McLaughlin, A.C. Newell, Fixed points and chaotic dynamics of an infinite-dimensional map. Proc. Conf. Chaos, Noise and Fractals, Como 1986; Malvern Phys. Series, Vol. 3, 137-186, Hilger, Bristol 1987.

    Google Scholar 

  11. H. Adachihara, D.W. McLaughlin, J.V. Moloney, A.C. Newell, Solitary waves as fixed points of infinite-dimensional maps for an optical ring cavity. Analysis, J. Math. Phys. 19 (1986), 63–85.

    Article  MathSciNet  Google Scholar 

  12. F. Merle, A note on the existence of a solution for a model of McLaughlin, Moloney, and Newell for optical ring cavities, J. Math. Phys. 30 (1989), 1643–1647.

    Article  MathSciNet  MATH  Google Scholar 

  13. N.B. Abraham, W.J. Firth, Overview of transverse effects in nonlinear-optical systems, J. Opt. Soc. Am. B 2, no.6 (1990), 951–962.

    Article  Google Scholar 

  14. J.V. Moloney, H. Adachihara, R. Indik, C. Lizarraga, R. Northcutt, D.W. McLaughlin, A.C. Newell, Modulational-induced optical pattern formulation in a passive optical-feedback system, J. Opt. Soc. Am. B 7, no.6 (1990), 1039–1044.

    Article  Google Scholar 

  15. G.S. McDonald, W.J. Firth, Spatial solitary-wave optical memory, J. Opt. Soc. Am. B 7, no. 7 (1990), 1328–1335.

    Article  Google Scholar 

  16. P. Mandel, Theoretical Problems in Cavity Nonlinear Optics, Cambridge Univ. Press, Cambridge 1997.

    Book  Google Scholar 

  17. Y. Chen, D.W. McLaughlin, Focusing-defocusing effects for diffusion-dominated bistable optical array, J. Opt. Soc. Am. B 16, no.7 (1999), 1087–1098.

    Article  Google Scholar 

  18. Y. Chen, D.W. McLaughlin, Diffraction effects on diffusive optical arrays and optical memory, Physica D 138 (2000), 163–195.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Brüll, H. Lange, Stationary and solitary wave type solutions of singular nonlinear Schrödinger equations, Math. Methods Appl. Sciences 8 (1986), 559–575.

    Article  MATH  Google Scholar 

  20. L. Brüll, H. Lange, Solitary waves for quasilinear Schrödinger equations, Expositiones Math. 4 (1986), 279–288.

    MATH  Google Scholar 

  21. C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Applied Mathematical Sciences, 139. Springer-Verlag, New York 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Illner, R., Lange, H., Teismann, H. (2002). On some Mathematical Aspects of the Ring Cavity Problem. In: Lorenzi, A., Ruf, B. (eds) Evolution Equations, Semigroups and Functional Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 50. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8221-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8221-7_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9480-7

  • Online ISBN: 978-3-0348-8221-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics