Skip to main content

Dynamical systems with time scale separation: averaging, stochastic modelling, and central limit theorems

  • Conference paper
Stochastic Climate Models

Part of the book series: Progress in Probability ((PRPR,volume 49))

Abstract

Considering dynamical systems involving processes on both slow and fast time scales, we deal with two methods to obtain reduced evolution equations for the slow variables alone: While Averaging yields effective models for prediction, issues like variability might profit from stochastic modelling. Rigorous results are available only in the limit of an infinite ratio between the two time scales. In a numerical case study, we show that reduced models obtained by Averaging may possess good predictive skill even far from the region of applicability of the Averaging Theorem (time scale ratio only around 10). Stochastic modelling of the same numerical example does not predict better, but it additionally provides information on the prediction error and on the long-term variability. For a practical implementation of a stochastic model, approximation of the fast variables by Gaussian white noise is desirable. We review some recent rigorous results on Central Limit Theorems and the way how deterministic chaotic dynamical systems can approach a (stochastic) Langevin process in the limit of infinitely separated time scales. Again, the numerical example indicates their relevance also under less idealized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arnold, Hasselmann’s Program Revisited: The Analysis of Stochasticity in Deterministic Climate Models, these proceedings; Yu. Kifer, Averaging and Climate Models, these proceedings.

    Google Scholar 

  2. M.I. Freidlin and A.D. Wentzell, Random perturbations of dynamical systems, 2nd ed., Springer, New York (1998), 212–282.

    MATH  Google Scholar 

  3. L. Arnold, Random Dynamical Systems, Springer, New York (1998).

    MATH  Google Scholar 

  4. N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam (1981).

    MATH  Google Scholar 

  5. R.F. Fox, Phys. Rep., 48C(1978), 179.

    Article  Google Scholar 

  6. E.N. Lorenz, Predictability: a problem partly solved, in: Seminar Proceedings “Predictability”, European Centre for Medium-Range Weather Forecasts (1995), 1-18.

    Google Scholar 

  7. R. Hegger, H. Kantz and T. Schreiber, Chaos, 9, 413 (1999).

    Article  MATH  Google Scholar 

  8. P. Holmes, J.L. Lumley and G. Berkooz, Turbulence, coherent structures, dynamical systems, and symmetry, Cambridge Univ. Press (1996).

    Google Scholar 

  9. G.W. Ford, M. Kac and P. Mazur, J. Math. Phys., 6 (1965), 504–515.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Zwanzig, J. Stat Phys., 9 (1973), 215–220.

    Article  Google Scholar 

  11. K. Lindenberg and B.J. West, J. Atmos. Sci., 41 (1984), 3021–3031.

    Article  Google Scholar 

  12. M. Kac, Ann. Math., 47 (1946), 33.

    Article  MATH  Google Scholar 

  13. P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).

    MATH  Google Scholar 

  14. N.I. Chernov, Probab. Theory Relat. Fields, 101 (1995), 321.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Keller, C.R. Acad. Sci. Paris, 291 (1980), 155.

    MATH  Google Scholar 

  16. M. Denker and W. Philipp, Ergod. Theory Dyn. Syst., 4 (1984), 541.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Burton and M. Denker, Trans. Am. Soc., 302 (1987), 715.

    Article  MathSciNet  MATH  Google Scholar 

  18. I.A. Ibragimov, Theory Probab. Appl., 7 (1962), 349.

    Article  Google Scholar 

  19. G. Keller and Z. Wahrsch, Verw. Gebiete, 69 (1985), 461.

    Article  MATH  Google Scholar 

  20. Ya.G. Sinai, Soviet Math. Dokl, 1 (1960), 983.

    MathSciNet  MATH  Google Scholar 

  21. Y. Kifer, Trans. Am. Math. Soc., 350 (1998), 1481.

    Article  MathSciNet  MATH  Google Scholar 

  22. L.A. Bunimovich, Theor. Probab. Appl., 19 (1974), 65.

    Article  MATH  Google Scholar 

  23. C. Beck and G. Roepstorff, Physica, 145A(1987), 1.

    MathSciNet  Google Scholar 

  24. C. Beck, Nonlinearity, 4 (1991), 1131.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Beck, Physica, 233A(1996), 419.

    Google Scholar 

  26. M.C. Mackey, Time’s Arrow: The Origins of Thermodynamic Behavior, Springer, New York (1992).

    Google Scholar 

  27. C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems, Cambridge University Press, Cambridge (1993).

    Book  Google Scholar 

  28. A. Prasad and R. Ramaswamy, Phys. Rev., 60E(1999), 2761.

    Google Scholar 

  29. C. Beck, J. Stat. Phys., 79 (1995), 875.

    Article  MATH  Google Scholar 

  30. A. Hilgers and C. Beck, Phys. Rev. 60E(1999), 5385.

    Google Scholar 

  31. C. Beck, Phys. Rev., 49E(1994), 3641.

    Google Scholar 

  32. R. Friedrich and J. Peinke, Phys. Rev. Lett, 78 (1997), 863; Physica, D102 (1997), 147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Rödenbeck, C., Beck, C., Kantz, H. (2001). Dynamical systems with time scale separation: averaging, stochastic modelling, and central limit theorems. In: Imkeller, P., von Storch, JS. (eds) Stochastic Climate Models. Progress in Probability, vol 49. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8287-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8287-3_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9504-0

  • Online ISBN: 978-3-0348-8287-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics