Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 129))

Abstract

The stochastic optimal control uses the differential equation of Bell-man and its solution—the Bellman function. We show how the homonym function in harmonic analysis is (and how it is not) the same stochastic optimal control Bellman function. Then we present several creatures from Bellman’s Zoo: a function that proves the inverse Hölder inequality, as well as several other harmonic analysis Bellman functions and their corresponding Bellman PDE’s. Finally we translate the approach of Burkholder to the language of “our” Bellman function.

The goal of this paper is almost entirely methodological: we relate the ideas between each other, rather than presenting the new ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. St. Buckley, Summation conditions on weights, Mich. Math. J., 40 (1993), 153–170.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. L. Burkholder, Explorations in martingale theory and its applications,Ecole d’Eté de Probabilité de Saint-Flour XIX, 1989, 1–66, Lecture Notes in Mathematics, 1464 Springer, Berlin, 1991.

    Chapter  Google Scholar 

  3. D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Prob., 12 (1984), 647–802.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Fefferman, C Kenig, J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Annals of Math., 134 (1991), 65–124.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Hucovic, S. Treil, A. Volberg, The Bellman functions and the sharp square estimates for square functions, Operator Theory: Advances and Applications, the volume in memory of S. A. Vinogradov, v. 113, Birkhauser Verlag, 2000.

    Google Scholar 

  6. N. Krylov, Optimal Control of Diffusion Processes, Springer-Verlag, New York, 1980, 308 p.

    Book  Google Scholar 

  7. F. Nazarov, The Beurling lemma via the Bellman function, Preprint, MSU, 1996.

    Google Scholar 

  8. F. Nazarov, S. Treil, The hunt for Bellman function: applications to estimates of singular integral operators and to other classical problems in harmonic analysis, Algebra i Analysis, 8 (1997), no. 5, 32–162.

    MathSciNet  Google Scholar 

  9. F. Nazarov, S. Treil, Hunt-Muckenhoupt-Wheeden inequality is now trivial, C. R. Acad. Sci. Paris, Ser. I, 323 (1996), 717–722.

    MathSciNet  Google Scholar 

  10. F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weght inequalities for Haar multipliers, J. of the Amer. Math. Soc., 12 (1999), no. 4, 909–928.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Nazarov, A. Volberg, Heating of the Beurling operator and estimates of its norm, Preprint, MSU, 2000, p. 1–12.

    Google Scholar 

  12. F. Nazarov, A. Volberg, Bellman function and Tl conditions for two-weight Hilbert transform with application to Carleson imbedding theorem for spaces K θ , Preprint, MSU, 2000, p. 1–28.

    Google Scholar 

  13. St. Petermichl, A. Volberg, Heating of the Beurling operator: weakly quasiregular maps on the plane are quasiregular, Preprint, MSU, 2000, p. 1–25.

    Google Scholar 

  14. St. Petermichl, J. Wittwer, A sharp weighted estimate on the norm of Hilbert transform via invariant A2 characteristic of the weight, Preprint, MSU, 2000.

    Google Scholar 

  15. E. Stein, Harmonic Analysis: Real-variable Methods,Orthogonality, And Oscillatory Integrals, Princeton Math. Series, 43, Monographs in Harmonic Analysis, Princeton Univ. Press, Princeton, NJ, 1993.

    Google Scholar 

  16. S. Treil, A. Volberg, Wavelets and the angle between past and future, J. Funct. Analysis, 143 (1997), no. 2, 269–308.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Wittwer, Ph. D. Thesis, University of Chicago, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Nazarov, F., Treil, S., Volberg, A. (2001). Bellman function in stochastic control and harmonic analysis. In: Borichev, A.A., Nikolski, N.K. (eds) Systems, Approximation, Singular Integral Operators, and Related Topics. Operator Theory: Advances and Applications, vol 129. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8362-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8362-7_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9534-7

  • Online ISBN: 978-3-0348-8362-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics