Skip to main content

Singular Operator as a Parameter of Self-adjoint Extensions

  • Conference paper
Operator Theory and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 118))

Abstract

Let Å be a symmetric restriction of a self-adjoint bounded from below operator A in a Hilbert space H and let A denote the Friedrichs extension of Å. We prove that in the case, where A A, under natural conditions, each self-adjoint extension A of Å has a unique representation in the form of a generalized sum, Ã = A + V, where V is a singular operator acting in the A-scale of Hilbert spaces, from H 1(A) to H -1(A). In the particular case, where Å has deficiency indices (1, 1), this result has been proven by Krein and Yavrian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.I. Akhiezer and I.M. Glazman, Theory of linear operators in Hilbert space, Moscow, 1966.

    Google Scholar 

  2. S. Albeverio, W. Karwowski and V. Koshmanenko, Square Power of Singularly Perturbed Operators, Math. Nachr. 173 (1995), 5–24.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Albeverio and V. Koshmanenko, Singular rank one perturbations of self-adjoint operators and Krein theory of self-adjoint extensions, to appear in Potential Anal.

    Google Scholar 

  4. S. Albeverio and V. Koshmanenko, Form-sum approximations of singular perturbations of self-adjoint operators, BiBoS Preprint Nr. 771/4/97, p. 23 (1997).

    Google Scholar 

  5. S. Albeverio and V. Koshmanenko, On the problem of the right Hamiltonian under singular form-sum perturbations, SFB 237 Preprint, Nr. 375, Institute für Mathematik Ruhr-Universität-Bochum, p. 30 (1997), to appear in Rev. Math. Phys.

    Google Scholar 

  6. S. Albeverio, V. Koshmanenko and K. Makarov, Generalized eigenfunctions under singular perturbations, Methods of Functional Analysis and Topology 5, no. 1 (1999).

    Google Scholar 

  7. Yu.M. Berezanskij, The bilinear forms and Hilbert equipment, In Spectral analysis of differential operators, Institute of Mathematics, Kiev (1980), 83–106.

    Google Scholar 

  8. Yu.M. Berezanskij, G.F. Us and Z.G. Sheftel, Functional Analysis, Higher School, Kiev, 1990.

    Google Scholar 

  9. M.Sh. Birman, To self-adjoint extensions theory of positive definite operators, Math. Sbornik 38 (80), no. 4 (1956), 431–450.

    Google Scholar 

  10. J.F. Brasche, V.D. Koshmanenko and H. Neidhardt, New aspects of Krein’s extension theory, Ukrainian Math. J. 46 (1994), 37–54.

    MathSciNet  Google Scholar 

  11. V.A. Derkach and M.M. Malamud, Generalized resolvent and the boundary value problems for Hermitian operators with gap, J. Funct. Anal. 95 (1991), 1–95.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Gesztesy and B. Simon, Rank-One Perturbations at Infinite Coupling, J. Funct. Anal. 128 (1995), 245–252.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Gesztesy, K.A. Makarov and E. Tsekanovskii, An Addendum to Krein’s Formula, J. Math. Anal. Appl. 222 (1998), 594–606.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Hassi and H. de Snoo, On rank one perturbations of selfadjoint operators, Integral equations and operator theory 29 (1997), 288–300.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1980.

    MATH  Google Scholar 

  16. W. Karwowski and V.D. Koshmanenko, On definition of the singular bilinear forms and singular linear operators, Ukrainian Math. J. 45, no. 8 (1993), 1084–1089.

    Article  MathSciNet  Google Scholar 

  17. W. Karwowski, V. Koshmanenko and S. Ôta, Schrödinger operator perturbed by operators related to null-sets, Positivity 2, no. 1 (1998), 77–99.

    Article  MathSciNet  MATH  Google Scholar 

  18. T.V. Karataeva and V.D. Koshmanenko, Generalized sum for operators (sent to Math. Notes).

    Google Scholar 

  19. V.D. Koshmanenko, Singular bilinear forms in perturbations theory of selfadjoint operators, Naukova Dumka, Kiev 1993, English translation: Volodymyr Koshmanenko, Singular quadratic forms in Perturbation Theory, Kluwer Academic Publishers, 1999.

    Google Scholar 

  20. V.D. Koshmanenko, Towards the rank-one singular perturbations of self-adjoint operators, Ukrainian Math. J. 43, no. 11 (1991), 1559–1566.

    Article  MathSciNet  Google Scholar 

  21. V.D. Koshmanenko, Perturbations of self-adjoint operators by singular bilinear forms, Ukrainian Math. J. 41 (1989), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  22. V.D. Koshmanenko, Singularly Perturbed Operators, Operator Theory. Advances and Applications. 70 (1994), 347–351.

    MathSciNet  Google Scholar 

  23. V.D. Koshmanenko, Regularized approximations of singular perturbations of the H -2 -class (1999), sent to Ukrainian Math. J.

    Google Scholar 

  24. V. Koshmanenko and O. Samoilenko, Singular perturbations of finite rank. Point spectrum, Ukrainian Math. J. 49 (1997), 1186–1212.

    MathSciNet  Google Scholar 

  25. M.G. Krein and V.A. Yavrian, Spectral shift functions arising in perturbations of a positive operator, J. Operator Theory 6 (1981), 155–191.

    MathSciNet  Google Scholar 

  26. M.G. Krein, Theory of self-adjoint extensions semibounded Hermitian operators and its applications I, Rec. Math. (Math. Sb.) 20, no. 3 (1947), 431–495.

    MathSciNet  Google Scholar 

  27. G. Nenciu, Removing cut-offs form singular perturbations: an abstract result, Lett. Math. Phys. 7 (1983), 301–306.

    Article  MathSciNet  MATH  Google Scholar 

  28. L.P. Nizhnik, On point interaction in Quantum Mechanics, Ukrainian Math. J. 49 (1997), 1557–1560.

    MathSciNet  Google Scholar 

  29. H. Neidhardt and V. Zagrebnov, On the right Hamiltonian for singular perturbations: general theory, Rev. Math. Phys. 9, no. 5 (1997), 609–633.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness, Academic Press, New York-San Francisco-London, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Koshmanenko, V. (2000). Singular Operator as a Parameter of Self-adjoint Extensions. In: Adamyan, V.M., et al. Operator Theory and Related Topics. Operator Theory: Advances and Applications, vol 118. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8413-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8413-6_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9557-6

  • Online ISBN: 978-3-0348-8413-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics