Skip to main content

Gene transfer to facilitate transplantation

  • Chapter
Gene Therapy in Inflammatory Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Other chapters in this volume have focused on gene transfer approaches for inhibition of immune responses against autoantigens. This chapter will discuss treatment of inflammatory responses directed against alloantigens, as a result of allogeneic transplantation of solid parenchymal organs or dispersed cells. From an immunological standpoint, autoimmunity and alloimmunity share many of the same basic mechanisms of lymphocyte activation and recruitment, reliance on clonal and nonclonal receptors to mediate cellular communication, participation of cytokines and adhesion receptors in diverse aspects of lymphocyte function, and effector mechanisms involving CD4+ and CD8+ T cells, B cells and macrophages [1]. The major difference between the two types of responses is that major histocompatibility complex (MHC) antigens are responsible for the vast majority of alloresponses, while autoimmunity for the most part involves responses to non-MHC antigens. Functional consequences of these differences are that MHC antigens can be presented directly to class I or class II allorestricted CD8+ or CD4+ T cells, respectively, or processed MHC-derived peptides can be represented indirectly to self-restricted, alloreactive T cells. In contrast, autoantigens are usually presented in the context of self MHC, often class II, to autoreactive CD4+ T cells. While these differences are clearly protean in nature and have enormous significance for the understanding and control of autoreactive and alloreactive immune responses, they have not resulted in clinically applicable experimental approaches or practical molecular interventions that substantially differentiate or affect one type of immune response in preference to the other. As a result, many of the approaches and considerations that are germane for control of alloimmunity are equally applicable to autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bromberg JS (1997) Transplant immunology. In: Surgery scientific principles and practice. 2nd ed. Lippincott-Raven, Philadelphia, PA, 527–555

    Google Scholar 

  2. Muruve DA, Manfro RC, Strom TB, Libermann TA (1997) Ex vivo adenovirus-mediated gene delivery leads to long-term expression in pancreatic islet transplants. Transplantation64: 542–546

    Article  PubMed  CAS  Google Scholar 

  3. Qin L, Ding Y, Pahud DR, Robson ND, Shaked A, Bromberg JS (1997) Adenovirus-mediated gene transfer of viral interleukin-10 inhibits the immune response to both alloantigen and adenoviral antigen. Hum Gene Ther 8: 1365–1374

    Article  PubMed  CAS  Google Scholar 

  4. Gruber SA (1996) Local immunosuppression of organ transplants. RG Landes Company and Chapman & Hall, Austin, TX

    Google Scholar 

  5. Bromberg JS, Qin L (1996) Gene transfer to the transplanted organ. In: Local immunosuppression of organ transplants. RG Landes Company and Chapman & Hall, Austin, TX, 169–180

    Google Scholar 

  6. Shaked A, Csete ME, Shiraishi M, Miller AR, Moen RM, Busuttil RW, Economou JS (1994). Retroviral-mediated gene transfer into rat experimental liver transplant. Transplantation 57: 32–34

    Article  PubMed  CAS  Google Scholar 

  7. Csete ME, Benhamou PY, Drazan KE, Wu L, Mclntee DF, Afra R, Mullen Y, Busuttil RW, Shaked A (1995) Efficient gene transfer to pancreatic islets mediated by adenoviral vectors. Transplantation 59: 263–268

    PubMed  CAS  Google Scholar 

  8. Drazan KE, Wu L, Olthoff KM, Jurim O, Busuttil RW, Shaked A (1995) Transduction of hepatic allografts achieves local levels of viral IL-10 which suppress alloreactivity in vitro. J Surg Res 59: 219–223

    Article  CAS  Google Scholar 

  9. Nabel EG, Plautz G, Nabel GJ (1990) Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 249: 1285–1288

    Article  PubMed  CAS  Google Scholar 

  10. Mehra MR, Stapleton DD, Cook JL, Zhang T, Ventura HO, Huang C, Maldonado B, Smart FW, Ré RN, Murgo JP, Barbee RW (1996) Adenovirus-mediated in vivo gene transfer in a rabbit model of allograft vasculopathy. J Heart Lung Transplant 15: 51–57

    PubMed  CAS  Google Scholar 

  11. Hullett DA (1996) Gene therapy in transplantation. J Heart Lung Transplant 15: 857–862

    PubMed  CAS  Google Scholar 

  12. Knechtle SJ (1996) Gene therapy and transplantation-A brief review. Transplant Proc 28: 19–23

    PubMed  CAS  Google Scholar 

  13. Wang J, Jiao S, Wolff JA, Knechtle SJ (1992) Gene transfer and expression in rat cardiac transplants. Transplantation 53: 703–705

    Article  PubMed  CAS  Google Scholar 

  14. Wang J, Ma Y, Knechtle SJ (1996) Adenovirus-mediated gene transfer into rat allografts. Transplantation 61: 1726–1729

    Article  PubMed  CAS  Google Scholar 

  15. Csete ME, Drazan KE, Van Bree M, Mclntee DF, McBride WH, Bett A, Graham FL, Busuttil RW, Berk AJ, Shakad A (1994) Adenovirus-mediated gene transfer in the transplant setting. Transplantation 57: 1502–1507

    PubMed  CAS  Google Scholar 

  16. Donahue JK, Kikkawa K, Johns DC, Marban E, Lawrence JH (1997) Ultrarapid, highly efficient viral gene transfer to the heart. Proc Natl Acad Sci USA 94: 4664–4668

    Article  PubMed  CAS  Google Scholar 

  17. Barr E, Leiden JM (1991) Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 254: 1507–1509

    Article  PubMed  CAS  Google Scholar 

  18. Shaked A, Csete ME, Drazan KE, Bullington D, Wu L, Busuttil RW, Berk AJ (1994) Ade-novirus-mediated gene transfer in the transplant setting. Transplantation 57: 1508–1511

    Article  PubMed  CAS  Google Scholar 

  19. Drazan KE, Wu L, Shen X, Bullington D, Jurim O, Busuttil RW, Shaked A (1995) Ade-novirus-mediated gene transfer in the transplant setting. Transplantation 59: 670–673

    Article  PubMed  CAS  Google Scholar 

  20. Lieber A, Vrancken Peeters MTFD, Meuse L, Fausto N, Perkins J, Kay MA (1995) Ade-novirus-mediated urokinase gene transfer induces liver regeneration and allows for efficient retrovirus transduction of hepatocytes in vivo. Proc Natl Acad Sci USA 92: 6210–6214

    Article  PubMed  CAS  Google Scholar 

  21. Lieber A, Vrancken Peeters MTFD, Gown A, Perkins J, Kay MA (1995) A modified urokinase plasminogen activator induces liver regeneration without bleeding. Hum Gene Ther 6: 1029–1037

    Article  PubMed  CAS  Google Scholar 

  22. Bosch A, McCray Jr., Chang SMW, Ulich TR, Simonet WS, Jolly DJ, Davidson BL (1996) Proliferation induced by keratinocyte growth factor enhances in vivo retroviral-mediated gene transfer to mouse hepatocytes. J Clin Invest 98: 2683–2687

    Article  PubMed  CAS  Google Scholar 

  23. Raper SE (1995) Hepatocyte transplantation and gene therapy. Clin Transplantation9: 249–254

    CAS  Google Scholar 

  24. Halbert CL, Standaert TA, Aitken ML, Alexander IE, Russell DW, Miller D (1997) Transduction by adeno-associated virus vectors in the rabbit airway: efficiency, persistence, and readministration. J Virology 71: 5932–5941

    PubMed  CAS  Google Scholar 

  25. Yang Y, Nunes FA, Berencsi K, Furth EE, Gönczöl E, Wilson JM (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91: 4407–4411

    Article  PubMed  CAS  Google Scholar 

  26. Riddell SR, Elliott M, Lewinsohn DA, Gilbert MJ, Wilson L, Manley SA, Lupton SD, Overell RW, Reynolds TC, Corey L, Greenberg P (1996) T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nature Med 2: 216–223

    Article  PubMed  CAS  Google Scholar 

  27. Tripathy SK, Black HB, Goldwasser E, Leiden JM (1996) Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nature Med 2: 545–550

    Article  PubMed  CAS  Google Scholar 

  28. Kay MA, Meuse L, Gown AM, Linsley P, Hollenbaugh D, Aruffo A, Ochs HD, Wilson CB (1997) Transient immunomodulation with anti-CD40 ligand antibody and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver. Proc Natl Acad Sci USA 94: 4686–4691

    Article  PubMed  CAS  Google Scholar 

  29. Kay MA, Holterman A, Meuse L, Gown A, Ochs HD, Linsley PS, Wilson CB (1995) Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nature Genetics 11: 191–197

    Article  PubMed  CAS  Google Scholar 

  30. DeMatteo RP, Markmann KF, Kozarsky KF, Barker CF, Raper SE (1996) Prolongation of adenoviral transgene expression in mouse liver by lymphocyte subset depletion. Gene Therapy3: 4–12

    PubMed  CAS  Google Scholar 

  31. Lochmüller H, Petrof BJ, Allen C, Prescott AS, Massie B, Karpati G (1995) Immunosuppression by FK506 markedly prolongs expression of adenovirus-delivered transgene in skeletal muscles of adult dystrophic [mdx] mice. Biochem Biophys Res Comm 213: 569–574

    Article  PubMed  Google Scholar 

  32. Vemuru RP, Davidson A, Aragona E, Chowdhury JR, Burk RD, Gupta S (1992) Immune tolerance to a defined heterologous antigen after intrasplenic hepatocyte transplantation: implications for gene therapy. FASEB J 6: 2836–2842

    PubMed  CAS  Google Scholar 

  33. Boasquevisque CHR, Mora BN, Schmid RA, Lee TC, Nagahiro I, Cooper JD, Patterson GA (1997) Ex vivo adenoviral-mediated gene transfer to lung isografts during cold preservation. Ann Thorac Surg 63: 1556–1561

    Article  PubMed  Google Scholar 

  34. Colson YL, Lange J, Fowler K, Ildstad ST (1996) Mechanism for cotolerance in non-lethally conditioned mixed chimeras: negative selection of the V beta T-cell receptor repertoire by both host and donor bone marrow-derived cells. Blood 88: 4601–4610

    PubMed  CAS  Google Scholar 

  35. Delaney CP, Murase N, Chen-Woan M, Fung JJ, Starzl TE, Demetris AJ (1996) Allogeneic hematolymphoid microchimerism and prevention of autoimmune disease in the rat. A relationship between allo-and autoimmunity. J Clin Invest 97: 217–225

    Article  PubMed  CAS  Google Scholar 

  36. Garcia-Morales R, Carreno M, Mathew J, Zucker K, Cirocco R, Ciancio G, Burke G, Roth D, Temple D, Rosen A et al (1997) The effects of chimeric cells following donor bone marrow infusions as detected by PCR-flow assays in kidney transplant recipients. J Clin Invest 99: 1118–1129

    Article  PubMed  CAS  Google Scholar 

  37. Eglitis MA, Kantoff P, Gilboa E, Anderson WF (1985) Gene expression in mice after high efficiency retroviral-mediated gene transfer. Science 230: 1395–1398

    Article  PubMed  CAS  Google Scholar 

  38. Keller G, Paige C, Gilboa E, Wagner EF (1985). Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318: 149–154

    Article  PubMed  CAS  Google Scholar 

  39. Snodgrass R, Keller G (1987) Clonal fluctuation within the haematopoietic system of mice reconstituted with retrovirus-infected stem cells. EMBO J 6: 3955–3960

    PubMed  CAS  Google Scholar 

  40. Bowtell DDL, Johnson GR, Kelso A, Cory S (1987) Expression of genes transferred to hemopoietic stem cells by recombinant retroviruses. Mol Biol Med 4: 229–250

    PubMed  Google Scholar 

  41. Chen BP, Fraser C, Reading C, Murray L, Uchida N, Galy A, Sasaki D, Tricot G, Jagannath S, Barlogie B et al (1995) Cytokine-mobilized peripheral blood CD34+Thy-1+Lin-human hematopoietic stem cells as target cells for transplantation-based gene therapy. Leukemia 9: S17–S25

    PubMed  Google Scholar 

  42. Dunbar CE, Cottier-Fox M, O’Shaughnessy JA, Doren S, Carter C, Bereson R, Brown S, Moen RC, Greenblatt J, Stewart FM et al (1995) Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 85: 3048–3057

    PubMed  CAS  Google Scholar 

  43. Madsen JC, Superina RA, Wood KJ, Morris PJ (1988) Immunological unresponsiveness induced by recipient cells transfected with donor MHC genes. Nature 332: 161–164

    Article  PubMed  CAS  Google Scholar 

  44. Sykes M, Sachs DH, Nienhuis AW, Pearson DA, Moulton AD, Bodine DM (1993) Specific prolongation of skin graft survival following retroviral transduction of bone marrow with an allogeneic major histocompatibility complex gene. Transplantation 55: 197–202

    Article  PubMed  CAS  Google Scholar 

  45. Emery DW, Smith CV, Shafer GE, Karson EM, Sachs DH, LeGuern C (1993) Expression of allogeneic class II cDNA in swine peripheral blood mononuclear cells following retroviral-mediated gene transfer into bone marrow. Transplant Proc 25: 140–141

    PubMed  CAS  Google Scholar 

  46. Emery DW, Shafer GE, Karson EM, Sachs DH, LeGuern C (1993) Retrovirus-mediated transfer and expression of an allogeneic major histocompatibility complex class II DRB cDNA in swine bone marrow cultures. Blood 81: 2460–2465

    PubMed  CAS  Google Scholar 

  47. Emery DW, Sablinski T, Arn JS, LeGuern C, Sachs DH (1994) Bone marrow culture and transduction of stem cells in a miniature swine model. Blood Cells 20: 498–503

    PubMed  CAS  Google Scholar 

  48. LeGuern C, Shimada H, Emery DW, Germana S, Shafer GE, Sachs DH (1995) Retrovirus-mediated transfer of MHC class II cDNA into swine bone marrow cells. J Mol Med73: 269–278

    Article  PubMed  CAS  Google Scholar 

  49. Fraser CC, Sykes M, Stanton Lee R, Sachs DH, LeGuern C (1995) Specific unresponsiveness to a retrovirally-transferred class I antigen is controlled through the helper pathway. J Immunol 154: 1587–1595

    PubMed  CAS  Google Scholar 

  50. Chahine AA, Yu M, McKernan MM, Stoeckert C, Lau HT (1995) Immunomodulation of pancreatic islet allografts in mice with CTLA4Ig secreting muscle cells. Transplantation 59: 1313–1318

    PubMed  CAS  Google Scholar 

  51. Carr-Brendel VE, Geller RL, Thomas TJ, Boggs DR, Young SK, Crudele J, Martinson LA, Maryanov DA, Johnson RC, Brauker JH (1997) Transplantation of cells in an immunoisolation device for gene therapy. Methods Mol Biol 63: 373–387

    PubMed  CAS  Google Scholar 

  52. Ilan Y, Prakash R, Davidson A, Jona V, Droguett G, Horwitz MS, Chowdhury NR, Chowdhury JR (1997) Oral tolerization to adenoviral antigens permits long-term gene expression using recombinant adenoviral vectors. J Clin Invest 99: 1098–1106

    Article  PubMed  CAS  Google Scholar 

  53. DeMatteo RP, Raper SE, Ahn M, Fisher KJ, Burke C, Radu A, Wider G, Claytor BR, Barker CF, Markmann JF (1995) Gene transfer to the thymus a means of abrogating the immune response to recombinant adenovirus. Annals Surgery 222: 229–242

    Article  CAS  Google Scholar 

  54. Ilan Y, Attavar P, Takahashi M, Davidson A, Horwitz MS, Guida J, Chowdhury NR, Chowdhury JR (1996) Induction of central tolerance by intrathymic inoculation of adenoviral antigens into the host thymus permits long-term gene therapy in Gunn rats. J Clin Invest 98: 2640–2647

    Article  PubMed  CAS  Google Scholar 

  55. Nakano N, Rooke R, Benoist C, Mathis D (1997) Positive selection of T cells induced by viral delivery of neopeptides to the thymus. Science 275: 678–683

    Article  PubMed  CAS  Google Scholar 

  56. DeMatteo RP, Chu G, Ahn M, Chang E, Barker CF, Markmann JF (1997) Long-lasting adenovirus transgene expression in mice through neonatal intrathymic tolerance induction without the use of immunosuppression. J Virol 71: 5330–5335

    PubMed  CAS  Google Scholar 

  57. Knechtle SJ, Wang J, Jiao S, Geissler EK, Sumimoto R, Wolff J (1994) Induction of specific tolerance by intrathymic injection of recipient muscle cells transfected with donor class I major histocompatibility complex. Transplantation 57: 990–996

    PubMed  CAS  Google Scholar 

  58. Knechtle SJ, Wang J, Graeb C, Zhai Y, Hong X, FechnerJr. Geissler EK (1997) Direct MHC class I complementary DNA transfer to thymus induces donor-specific unresponsiveness, which involves multiple immunologic mechanisms. J Immunol 159: 152–158

    PubMed  CAS  Google Scholar 

  59. Knechtle SJ, Zhai Y, Fechner J.(1996) Gene therapy in transplantation. Transplant Immunology 4: 257–264

    Article  PubMed  CAS  Google Scholar 

  60. Drazan KE, Olthoff KM, Wu L, Shen X, Gelman A, Shaked A (1996) Adenovirus-mediated gene transfer in the transplant setting. Transplantation 62: 1080–1084

    Article  PubMed  CAS  Google Scholar 

  61. Qin L, Ding Y, Bromberg JS (1996) Gene transfer of transforming growth factor-β1 prolongs murine cardiac allograft survival by inhibiting cell mediated immunity. Hum Gene Ther 7: 1981–1988

    Article  PubMed  CAS  Google Scholar 

  62. Qin L, Chavin KD, Ding Y, Favarro JP, Woodward JE, Lin J, Tahara H, Robbins P, Shaked A et al (1995) Multiple vectors effectively achieve gene transfer in a murine cardiac transplantation model: immunosuppression with TGF-β1 or vIL-10. Transplantation 59: 809–816

    PubMed  CAS  Google Scholar 

  63. Levy AE, Alexander JW (1995) Administration of intragraft interleukin-4 prolongs cardiac allograft survival in rats treated with donor-specific transfusion/cyclosporine. Transplantation 60: 405–406

    Article  PubMed  CAS  Google Scholar 

  64. Mueller R, Krahl T, Sarvetnick N (1996) Pancreatic expression of interleukin-4 abrogates insulitis and autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 184: 1093–1099

    Article  PubMed  CAS  Google Scholar 

  65. Sarvetnick N (1996) Mechanisms of cytokine-mediated localized immunoprotection. J Exp Med 184: 1597–1600

    Article  PubMed  CAS  Google Scholar 

  66. Benhamou PY, Mullen Y, Shaked A, Bahmiller D, Csete ME (1996) Decreased alloreactivity to human islets secreting recombinant viral interleukin 10. Transplantation 62: 1306–1312

    Article  PubMed  CAS  Google Scholar 

  67. Qin L, Chavin KD, Tahara H, Ding Y, Favarro J, Woodward J, Lin J, Robbins PD, Lotze MT, Bromberg JS (1996) Retrovirus-mediated transfer of viral interleukin-10 gene prolongs murine cardiac allograft survival. J Immunol 156: 2316–2323

    PubMed  CAS  Google Scholar 

  68. Kolls J, Peppel K, Silva M, Beutler B (1994) Prolonged and effective blockade of tumor necrosis factor activity through adenovirus-mediated gene transfer. Proc Natl Acad Sci USA 91: 215–219

    Article  PubMed  CAS  Google Scholar 

  69. Rogy MA, Auffenberg T, Espat NJ, Philip R, Remick D, Wollenberg GK, Copeland III EM, Moldawer L (1995) Human tumor necrosis factor receptor (p55) and interleukin 10 gene transfer in the mouse reduces mortality to lethal endotoxemia and also attenuates local inflammatory responses. J Exp Med 181: 2289–2293

    Article  PubMed  CAS  Google Scholar 

  70. Grewal IS, Grewal KD, Wong FS, Picarells DE, Janeway Jr, Flavell RA (1996) Local expression of transgene encoded TNFα in islets prevents autoimmune diabetes in nonobese diabetic (NOD) mice by preventing the development of auto-reactive islet-specific T cells. J Exp Med 184: 1963–1974

    Article  PubMed  CAS  Google Scholar 

  71. Tufariello J, Cho S, Horwitz MS (1994) The adenovirus E3 14.7-kilodalton protein which inhibits cytolysis by tumor necrosis factor increases the virulence of vaccinia virus in a murine pneumonia model. J Virol 68: 453–462

    PubMed  CAS  Google Scholar 

  72. Tufariello J, Cho S, Horwitz MS (1994) Adenovirus E3 14.7-kilodalton protein, an antagonist of tumor necrosis factor cytolysis, increases the virulence of vaccinia virus in severe combined immunodeficient mice. Proc Natl Acad Sci USA 91: 10987–10991

    Article  PubMed  CAS  Google Scholar 

  73. Li Y, Kang J, Horwitz MS (1997) Interaction of an adenovirus 14.7-kilodalton protein inhibitor of tumor necrosis factor alpha cytolysis with a new member of the GTPase superfamily of signal transducers. J Virol 71: 1576–1582

    PubMed  CAS  Google Scholar 

  74. Efrat S, Fejer G, Brownlee M, Horwitz MS (1995) Prolonged survival of pancreatic islet allografts mediated by adenovirus immunoregulatory transgenes. Proc Natl Acad Sci USA 92: 6947–6951

    Article  PubMed  CAS  Google Scholar 

  75. Ilan Y, Droguett G, Chowdhury NR, Li Y, Sengupta K, Thummala NR, Davidson A, Chowdhury JR, Horwitz MS (1997) Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc Natl Acad Sci USA 94: 2587–2592

    Article  PubMed  CAS  Google Scholar 

  76. Gainer AL, Korbutt GS, Rajotte RV, Warnock GL, Elliott JF (1994) Expression of CTLA4-Ig by biolistically transfected mouse islets promotes islet allograft survival. Transplantation 63: 1017–1044

    Article  Google Scholar 

  77. Kato K, Shimozato O, Hoshi K, Wakimoto H, Hamada H, Yagita H, Okumura K (1996) Local production of the p40 subunit of interleukin 12 suppresses T-helper 1-mediated immune responses and prevents myoblast rejection. Proc Natl Acad Sci USA 93: 9085–9089

    Article  PubMed  CAS  Google Scholar 

  78. Chen S, Wilson JM, Vallance DK, Hartman JW, Davidson BL, Roessler BJ (1995) A recombinant adenoviral vector expressing a soluble form of VCAM-1 inhibits VCAM-l/VLA-4 adhesion in transduced synoviocytes. Gene Therapy 2: 469–480

    PubMed  CAS  Google Scholar 

  79. Grunhaus A, Cho S, Horwitz MS (1994) Association of vaccinia virus-expressed adenovirus E3-19K glycoprotein with Class I MHC and its effects on virulence in a murine pneumonia model. Virology 200: 535–546

    Article  PubMed  CAS  Google Scholar 

  80. Bellgrau D (1995) A role for CD95 ligand in preventing graft rejection. Nature 377: 630–632

    Article  PubMed  CAS  Google Scholar 

  81. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270: 1189–1192

    Article  PubMed  CAS  Google Scholar 

  82. Lau HT, Yu M, Fontana A, Stoeckert CJ (1996) Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273: 109–112

    Article  PubMed  CAS  Google Scholar 

  83. Kang S (1997) Fas ligand expression in islets of langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med 3: 738–743

    Article  PubMed  CAS  Google Scholar 

  84. Chervonsky AV (1997) The role of Fas in autoimmune diabetes. Cell 89: 17–24

    Article  PubMed  CAS  Google Scholar 

  85. Allison J, Georgiou HM, Strasser A, Vaux DL (1997) Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltrate but does not confer immune privilege upon islet allograft. Proc Natl Acad Sci USA 94: 3943–3947

    Article  PubMed  CAS  Google Scholar 

  86. Seino K, Kayagaki N, Okumura K, Yagita H (1997) Antitumor effect of locally produced CD95 ligand. Nature Med 3: 165–170

    Article  PubMed  CAS  Google Scholar 

  87. Simons M, Edelman ER, DeKeyser J, Langer R, Rosenberg RD (1992) Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 359: 67–70

    Article  PubMed  CAS  Google Scholar 

  88. Morishita R, Gibbons GH, Ellison KE, Nakajima M, Zhang L, Kaneda K, Ogihara T, Dzau V (1993) Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci USA 90: 8474–8478

    Article  PubMed  CAS  Google Scholar 

  89. Ohno T, Gordon D, San H, Pompili VJ, Imperiale MJ, Nabel GJ, Nabel EG (1994) Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 265: 781–784

    Article  PubMed  CAS  Google Scholar 

  90. Chang MW, Barr E, Seltzer J, Jiang Y, Nabel GJ, Nabel EG, Parmacek MS, Leiden JM (1995) Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 267: 518–522

    Article  PubMed  CAS  Google Scholar 

  91. Von Der Leyen HE, Gibbons GH, Morishita R, Lewis NP, Zhang L, Nakajima M, Kaneda Y, Cooke JP, Dzau V (1995) Gene therapy inhibiting neointimal vascular lesion: In vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 92: 1137–1141

    Article  PubMed  Google Scholar 

  92. Mann MJ, Gibbons GH, Tsao PS, Von Der Leyen HE, Cooke JP, Buitrago R, Kernoff R, Dzau VJ (1997) Cell cycle inhibition preserves endothelial function in genetically engineered rabbit vein grafts. J Clin Invest 99: 1295–1301

    Article  PubMed  CAS  Google Scholar 

  93. Yang Y, Ertl HCJ, Wilson JM (1994) MHC class I restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1 deleted recombinant adenoviruses. Immunity 1: 433–442

    Article  PubMed  CAS  Google Scholar 

  94. Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM (1995) Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: Tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 92: 1401–1405

    Article  PubMed  CAS  Google Scholar 

  95. Doherty PC, Allen W, Eichelberger M, Carding SR (1992) Roles of αβ and γδ T cell subsets in viral immunity. Annu Rev Immunol 10: 123–151

    Article  PubMed  CAS  Google Scholar 

  96. Yang Y, Li Q, Ertl HCJ, Wilson JM (1995) Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 69: 2004–2015

    PubMed  CAS  Google Scholar 

  97. Yang Y, Su Q, Wilson JM (1996) Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs. J Virol 70: 7209–7212

    PubMed  CAS  Google Scholar 

  98. Yang Y, Trinchieri G, Wilson JM (1995) Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nature Med 1: 890–893

    Article  PubMed  CAS  Google Scholar 

  99. Yang Y, Xiang Z, Etrl HCJ, Wilson JM (1995) Upregulation of class I MHC antigens by interferon-γ is necessary for the T cell mediated elimination of recombinant adenovirus infected hepatocytes in vivo. Proc Natl Acad Sci USA 92: 7257–7261

    Article  PubMed  CAS  Google Scholar 

  100. Acsadi G, Lochmuller H, Jani A, Huard J, Massie B, Prescott S, Simoneau M, Petrof BJ, Karpati G (1996) Dystrophin expression in muscles of mdx mice after adenovirus-medi-ated in vivo gene transfer. Hum Gene Ther 7: 129–140

    Article  PubMed  CAS  Google Scholar 

  101. Zsengeller Z, Wert S, Hull W, Hu X, Yei S, Trapnell B, Whitsett J (1995) Persistence of replication-deficient adenovirus-mediated gene transfer in lungs of immune-deficient (nu/nu) mice. Hum Gene Ther 6: 457–467

    Article  PubMed  CAS  Google Scholar 

  102. Pilewski JM, Scott DJ, Wilson JM, Albelda SM (1995) ICAM-1 expression on bronchial epithelium after recombinant adenovirus infection. Am J Respir Cell Mol Biol 12: 142–148

    PubMed  CAS  Google Scholar 

  103. Stark JM, Amin RS, Trapnell BC (1996) Infection of A549 cells with a recombinant adenovirus vector induces ICAM-1 expression and increased CD-18-dependent adhesion of activated neutrophils. Hum Gene Ther 7: 1669–1681

    Article  PubMed  CAS  Google Scholar 

  104. Amin R, Wilmott R, Schwarz Y, Trapnell B, Stark J (1995) Replication-deficient adenovirus induces expression of interleukin-8 by airway epithelial cells in vitro. Hum Gene Ther 6: 145–153

    Article  PubMed  CAS  Google Scholar 

  105. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG (1997) Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther8: 37–44

    Article  PubMed  CAS  Google Scholar 

  106. Yei S, Mittereder N, Wert S, Whitsett JA, Wilmott RW, Trapnell BC (1994) In vivo evaluation of the safety of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator DNA to lung. Hum Gene Ther 5: 733–746

    Article  Google Scholar 

  107. Newman KD, Dunn PF, Owens JW, Schulick AH, Virmani R, Sukhova G, Libby P, Dichek DA (1995) Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest 96: 2955–2965

    Article  PubMed  CAS  Google Scholar 

  108. Vilquin JT, Guerette B, Kinoshita I, Roy B, Goulet M, Gravel C, Roy R, Tremblay JP (1995) FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Hum Gene Ther 6: 1391–1401

    Article  PubMed  CAS  Google Scholar 

  109. Gordon EM, Anderson WF (1994) Gene therapy using retroviral vectors. Curr Opin Biotech 5: 611–616

    Article  PubMed  CAS  Google Scholar 

  110. Gunzburg WH, Salmons B (1996) Development of retroviral vectors as safe, targeted gene delivery systems. J Mol Med 74: 171–182

    Article  PubMed  CAS  Google Scholar 

  111. Schofield JP, and Caskey CT (1995) Non-viral approaches to gene therapy. Br Med Bull 51: 56–71

    PubMed  CAS  Google Scholar 

  112. Yamamoto S, Yamamoto T, Kataoka T, Kuramoto E, Yano O, Tokunaga T (1992) Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment INF-mediated natural killer activity. J Immunol 148: 4072–4076

    PubMed  CAS  Google Scholar 

  113. Yamamoto T, Yamamoto S, Kataoka T, Komuro K, Kohase M, Tokunaga T (1994) Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res 85: 775–779

    Article  CAS  Google Scholar 

  114. Tokunaga T, Yano O, Kuramoto E, Kimura Y, Yamamoto T, Kataoka T, Yamamoto S (1992) Synthetic oligonucleotides with particular base sequences from the cDNA encoding proteins of mycobacterium bovis BCG induce interferons and activate natural killer cells. Microbiol Immunol 36: 55–66

    PubMed  CAS  Google Scholar 

  115. Ballas ZK, Rasmussen WL, Krieg AM (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides. J Immunol 157: 1840–1845

    PubMed  CAS  Google Scholar 

  116. Yi AK, Klinman DM, Martin TL, Matson S, Krieg AM (1996) Rapid immune activation by CpG motifs in bacterial DNA. J Immunol 157: 5394–5402

    PubMed  CAS  Google Scholar 

  117. Yi AK, Chace JH, Cowdery JS, Krieg AM (1996) IFN-g promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA oligodeoxynucleotides. J Immunol 156: 558–564

    PubMed  CAS  Google Scholar 

  118. Yamamoto T, Yamamoto S, Kataoka T, Tokunaga T (1994) Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol Immunol 38: 831–836

    PubMed  CAS  Google Scholar 

  119. Kuramoto E, Yano O, Kimura Y, Baba M, Makino T, Yamamoto S, Yamamoto T, Kataoka T, Tokunaga T (1992) Oligonucleotide sequences required for natural killer cell activation. Jpn J Cancer Res 83: 1128–1131

    Article  PubMed  CAS  Google Scholar 

  120. Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM (1996) CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon-γ. Proc Natl Acad Sci USA 93: 2879–2883

    Article  PubMed  CAS  Google Scholar 

  121. Stacey KJ, Sweet MJ, Hume DA (1996) Macrophages ingest and are activated by bacterial DNA. J Immunol 157: 2116–2122

    PubMed  CAS  Google Scholar 

  122. Sato Y, Roman M, Tighe H, Lee D, Corr M, Nguyen MD, Silverman GJ, Lotz M, Carson DA, Raz E (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273: 352–354

    Article  PubMed  CAS  Google Scholar 

  123. Gooding LR (1992) Virus proteins that counteract host immune defenses. Cell 71: 5–7

    Article  PubMed  CAS  Google Scholar 

  124. Kotwal G (1996) The great escape: immune evasion by pathogens. The Immunologist 4/5: 157–164

    Google Scholar 

  125. Bromberg JS, DeBruyne LA, Qin L (1997) Interactions between the immune system and gene therapy vectors. Bidirectional regulation of response and expression. Adv Immunol 69: 353–409

    Article  Google Scholar 

  126. Hsu DH, De Waal Malefyt R, Fiorentino DF, Dang MN, Vieira P, De Vries J, Spits H, Mosmann TR, Moore KW (1990) Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science 250: 830–832

    Article  PubMed  CAS  Google Scholar 

  127. de Waal Malefyt R, Haanen J, Spits H, Roncarlol MG, te Velde A, Figdor C, Johnson C, Kastelein R, Yssel H, de Vries JE (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via down-regulation of class II major histocompatibility complex expression. J Exp Med 174: 915–924

    Article  PubMed  Google Scholar 

  128. Vieira P, de Waal Malefyt R, Dang MN, Johnson KE, Kastelein R, Fiorentino DF, de Vries JE, Roncarolo MG, Mosmann TR, and Moore KW (1991) Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci USA 88: 1172–1176

    Article  PubMed  CAS  Google Scholar 

  129. Suzuki T, Tahara H, Narula S, Moore KW, Robbins PD, Lotze MT (1995) Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J Exp Med 182: 477–486

    Article  PubMed  CAS  Google Scholar 

  130. Routes JM, Metz BA, Cook JL (1993) Endogenous expression of E1A in human cells enhances the effect of adenovirus E3 on class I major histocompatibility complex antigen expression. J Virol 67: 3176–3181

    PubMed  CAS  Google Scholar 

  131. Burgert HG, Kvist S (1985) An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41: 987–997

    Article  PubMed  CAS  Google Scholar 

  132. Beier DC, Cox JH, Vining DR, Cresswell P, Engelhard VH (1994) Association of human class I MHC alleles with the adenovirus E3/19K protein. J Immunol 152: 3862–3872

    PubMed  CAS  Google Scholar 

  133. Anderson M, Paäbo S, Nilsson T, Peterson A (1985) Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell 43: 215–222

    Article  Google Scholar 

  134. Feuerbach D, Etteldorf S, Ebenau-Jehle C, Abastado JP, Madden D, Burgert HG (1994) Identification of amino acids within the MHC module important for the interaction with the adenovirus protein E3/19k. J Immunol 153: 1626–1636

    PubMed  CAS  Google Scholar 

  135. Lee MG, Abina MA, Haddada H, Perricaudet M (1995) The constitutive expression of the immunomodulatory gp 19k protein in E1-, E3-adenoviral vectors strongly reduces the host cytotoxic T cell response against the vector. Gene Tber 2: 256–262

    CAS  Google Scholar 

  136. Trapnell BC, Gorziglia M (1994) Gene therapy using adenoviral vectors. Curr Opin Biotech 5: 617–625

    Article  PubMed  CAS  Google Scholar 

  137. Engelhardt JF, Ye X, Doranz B, Wilson JM (1994) Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA 91: 6196–6200

    Article  PubMed  CAS  Google Scholar 

  138. Yang Y, Nunes FA, Berencsi K, Gonczol E, Englehardt JF, Wilson JM (1994) Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nature Genetics 7: 362–368

    Article  PubMed  CAS  Google Scholar 

  139. Dedieu JF, Vigne E, Torrent C, Jullien C, Mahfouz I, Caillaud JM, Aubailly N, Orsini C, Guillaume JM, Opolon P et al (1997) Long-term gene delivery into the livers of immunocompetent mice with E1/E4-defective adenoviruses. J Virol 71: 4626–4637

    PubMed  CAS  Google Scholar 

  140. Armentano D, Zabner J, Sacks C, Sookdeo CC, Smith MP, St George JA, Wadsworth SC, Smith AE, Gregory RJ, St George JA (1997) Effect of the E4 region on the persistence of transgene expression from adenovirus vectors. J Virol 71: 2408–2416

    PubMed  CAS  Google Scholar 

  141. Kochanek S, Clemens PR, Mitani K, Chen HH, Chan S, Caskey CT (1996) A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci USA 93: 5731–5736

    Article  PubMed  CAS  Google Scholar 

  142. Clemens PR, Kochanek S, Sunada Y, Chan S, Chen HH, Campbell KP, Caskey CT (1996) In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther 3: 965–972

    PubMed  CAS  Google Scholar 

  143. Challita PM, Kohn DB (1994) Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc Natl Acad Sci USA 91: 2567–2571

    Article  PubMed  CAS  Google Scholar 

  144. Fang B, Eisensmith RC, Wang H, Kay MA, Cross RE, Landen CN, Gordon G, Bellinger DA, Read MS, Hu PC et al (1995) Gene therapy for hemophilia B: host immunosuppression prolongs the therapeutic effect of adenovirus-mediated factor IX expression. Human Gene Ther 6: 1039–1044

    Article  CAS  Google Scholar 

  145. Yang Y, Su Q, Grewal IS, Schilz R, Flavell RA, Wilson JM (1996) Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues. J Virol 70: 6370–7377

    PubMed  CAS  Google Scholar 

  146. McCoy RD, Davidson BL, Roessler BJ, Huffnagle GB, Simon RH (1995) Expression of human interleukin-1 receptor antagonist in mouse lungs using a recombinant adenovirus: effects on vector-induced inflammation. Gene Therapy 2: 437–442

    PubMed  CAS  Google Scholar 

  147. Shiraishi M, Kusano T, Hara J, Hiroyasu S, Shao-Ping M, Makino Y, Muto Y (1996) Adenovirus-mediated gene transfer using ex vivo perfusion of the heart graft. Surg Today26: 624–628

    Article  PubMed  CAS  Google Scholar 

  148. Ardehali A, Fyfe A, Laks H, Drinkwater DC Jr, Qiao JH, Lusis AJ (1995) Direct gene transfer into donor hearts at the time of harvest. J Thoracic Cardiovas Surg 109: 716–719

    Article  CAS  Google Scholar 

  149. Hortelano G, Al-Hendy A, Ofosu FA, Chang PL (1996) Delivery of human factor IX in mice by encapsulated recombinant myoblasts: a novel approach towards allogeneic gene therapy of hemophilia B. Blood 87: 5095–5103

    PubMed  CAS  Google Scholar 

  150. Dwarki VJ, Belloni P, Nijjar T, Smith J, Couto L, Rabier M, Clift S, Berns A, Cohen LK (1995) Gene therapy for hemophilia A: production of therapeutic levels of human factor VIII in vivo in mice. Proc Natl Acad Sci USA 92: 1023–1027

    Article  PubMed  CAS  Google Scholar 

  151. Rettinger SD, Kennedy SC, Wu X, Saylors RL, Hafenrichter DG, Flye MW, Ponder KP (1994) Liver-directed gene therapy: Quantitative evaluation of promoter elements by using in vivo retroviral transduction. Proc Natl Acad Sci USA 91: 1460–1464

    Article  PubMed  CAS  Google Scholar 

  152. Yao S, Farjo A, Roessler BJ, Davidson BL, Kurachi K (1996) Adenovirus-mediated transfer of human factor IX gene in immunodeficient and normal mice: evidence for prolonged stability and activity of the transgene in liver. Viral Immunol 9: 141–153

    Article  PubMed  CAS  Google Scholar 

  153. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV (1996) Intracellular inactivation of the Hepatitis B virus by cytotoxic T lymphocytes. Immunity 4: 25–36

    Article  PubMed  CAS  Google Scholar 

  154. Tsui LV, Guidotti LG, Ishikawa T, Chisari FV (1995) Posttranscriptional clearance of hapatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. Proc Natl Acad Sci USA 92: 12398–12402

    Article  PubMed  CAS  Google Scholar 

  155. Harms JS, Splitter GA (1995) Interferon-g inhibits transgene expression driven by SV40 or CMV promoters but augments expression driven by the mammalian MHC I promoter. Hum Gene Ther 6: 1291–1297

    Article  PubMed  CAS  Google Scholar 

  156. Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS (1997) Promoter attenuation in gene therapy: IFNγ and TNFα inhibit transgene expression. Hum Gene Ther 8: 1851–1861

    Google Scholar 

  157. Lin H, Parmacek MS, Morle G, Boiling S, Leiden JM (1990) Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 82: 2217–2221

    Article  PubMed  CAS  Google Scholar 

  158. Wolff JA, Malone RW, Williams P, Chang W, Ascadi G, Jani A, Feigner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247: 1456–1468

    Article  Google Scholar 

  159. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T (1993) Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 73: 1202–1207

    Article  PubMed  CAS  Google Scholar 

  160. Ardehali A, Fyfe A, Laks H, Drinkwater DC Jr, Qiao JH, Lusis AJ (1995) Direct gene transfer into donor hearts at the time of harvest. J Thoracic Cardiovas Surg 109: 716–719

    Article  CAS  Google Scholar 

  161. Fyfe AI, Ardehali A, Laks H, Drinkwater DC, Lusis AJ (1995) Biologic modification of the immune response in mouse cardiac isografts using gene transfer. J Heart Lung Transplant 14: S165–S170

    PubMed  CAS  Google Scholar 

  162. Gojo S, Kitamur S, Niwaya K, Yoshida Y, Sakaguchi H, Kawachi K (1996) Ex vivo gene transfer to transplanted heart greats using adenoviral vector. Transplant Proc 28: 1818–1819

    PubMed  CAS  Google Scholar 

  163. Stephan DJ, Yang Z-Y, San H, Simari RD, Wheeler CJ, Feigner PL, Gordon D, Nabel GJ, Nabel EG (1996) A new cationic liposome DNA complex enhances the efficiency of arterial gene transfer in vivo. Hum Gene Ther 7: 1803–1812

    Article  PubMed  CAS  Google Scholar 

  164. Qin L, Chavin KD, Ding Y, Woodward JE, Favaro JP, Lin J, Bromberg JS (1994) Gene transfer for transplantation: Prolongation of allograft survival with transforming growth factor-β1. Annals Surg 220: 508–519

    Article  CAS  Google Scholar 

  165. Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR (1990) Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science 248: 1230–1234.

    Article  PubMed  CAS  Google Scholar 

  166. Chen WF, Zlotnik A (1991) IL-10: a novel cytotoxic T cell differentiation factor. J Immunol 147: 528–534

    PubMed  CAS  Google Scholar 

  167. Rousset F, Garcia E, Defrance T, Peronne C, Vezzio N, Hsu DH, Kastelein R, Moore KW, Banchereay J (1992) Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci USA 89: 1890–1893

    Article  PubMed  CAS  Google Scholar 

  168. Thompson-Snipes L, Dhar V, Bond MW, Mosmann TR, Moore KW, Rennick DM (1991) Interleukin 10: a novel stimulatory factor for mast cells and their progenitors. J Exp Med 173: 507–510

    Article  PubMed  CAS  Google Scholar 

  169. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE (1991) Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174: 1209–1220

    Article  PubMed  Google Scholar 

  170. Mosmann TR (1994) Properties and functions of interleukin-10. Adv Immunol 56: 1–26

    Article  PubMed  CAS  Google Scholar 

  171. Moses HL, Yang EY, Pietenpol JA (1990) TGF-β stimulation and inhibition of cell proliferation: New mechanistic insights. Cell 63: 245–247

    Article  PubMed  CAS  Google Scholar 

  172. Nilsen-Hamilton M (1990) Transforming growth factor-β and its actions on cellular growth and differentiation. Curr Topics Develop Biol 24: 95–136

    Article  CAS  Google Scholar 

  173. Mastrangeli A, Danel C, Rosenfeld MA, Stratford-Perricaudet L, Perricaudet M, Pavirani A, Lecocq JP, Crystal RG (1993) Diversity of airway epithelial cell targets for in vivo recombinant adenovirus-mediated gene transfer. J Clin Invest 91: 225–234

    Article  PubMed  CAS  Google Scholar 

  174. Lemarchand P, Jones M, Danel C, Yamada I, Mastrangeli A, Crystal RG (1994) In vivo adenovirus-mediated gene transfer to lungs. J Appl Physiol 76: 2840–2845

    PubMed  CAS  Google Scholar 

  175. Chapelier A, Danel C, Mazmanian M, Bacha EA, Sellak H, Gilbert MA, Herve P, Lemarchand P (1996) Gene therapy in lung transplantation: Feasibility of ex vivo adenovirus-mediated gene transfer to the lung. Hum Gene Ther 7: 1837–1845

    Article  PubMed  CAS  Google Scholar 

  176. Mora BN, Boasquevisque CHR, Boglione M Ritter JH, Scheule RK, Yew NS, Nietupski J, Qin L, DeBruyne L, Bromberg JS et al (1997) Improvement in lung allograft function following transfection with transforming growth factor β1. The Society of Thoracic Surgeons, meeting abstract

    Google Scholar 

  177. Kitamura, M (1994) Transfer of exogenous genes into the kidney. Exp Nephrol 2: 313–317

    PubMed  CAS  Google Scholar 

  178. Bosch RJ, Woolf AS, Fine LG (1993) Gene transfer into the mammalian kidney: direct retrovirus transduction of regenerating tubular epithelial cells. Exp Nephrol 1: 49–54

    PubMed  CAS  Google Scholar 

  179. Moullier P, Friedlander G, Calise D, Ronco P, Perricaudet M, Ferry N (1994) Adenoviral-mediated gene transfer to renal tubular cells in vivo. Kidney International 45: 1220–1225

    Article  PubMed  CAS  Google Scholar 

  180. Kitamura M, Taylor S, Unwin R, Burton S, Shimizu F, Fine LG (1994) Gene transfer into the rat glomerulus via a mesangial cell vector: Site-specific delivery, in situ amplification and sustained expression of an exogenous gene in vivo. J Clin Invest 94: 497–505

    Article  PubMed  CAS  Google Scholar 

  181. Woolf AS, Bosch RJ, Fine LG (1993) Gene transfer into the mammalian kidney: Microtransplantation of retrovirus-transduced metanephric tissue. Exp Nephrol 1: 41–48

    PubMed  CAS  Google Scholar 

  182. Koseki C, Herzlinger D, Al-Aweqati Q (1991) Integration of embryonic nephrogenic cells carrying a reporter gene into functioning nephrons. Am J Physiol 261: C550–C554

    PubMed  CAS  Google Scholar 

  183. Ziegler ST, Kerby JD, Curiel DT, Diethelm AG, Thompson JA (1996) Molecular conjugate-mediated gene transfer into isolated human kidneys. Transplantation 61: 812–817

    Article  Google Scholar 

  184. Docherty K (1997) Gene therapy for diabetes mellitus. Clin Science 92: 321–330

    CAS  Google Scholar 

  185. Ferber S, Beltrande I, Rio H, Johnson JH, Noel RJ, Cassidy LE, Clark S, Becker TC, Hughes SD, Newgard CB (1994) GLUT-2 gene transfer into insulinoma cells confers both low and high affinity glucose-stimulated insulin release. J Biol Chem 269: 11523–11529

    PubMed  CAS  Google Scholar 

  186. Deuschle U, Pepperkok R, Wang F, Giordano TJ, McAllister WT, Ansorge W, Bujard H (1989) Regulated expression of foreign genes in mammalian cells under the control of coliphage T3 RNA polymerase and lac repressor. Proc Natl Acad Sci USA 86: 5600–5604

    Article  Google Scholar 

  187. Elfrat S, Fusco-Demane D, Lemberg H, Erman OA, Wang X (1995) Conditional transformation of a pancreatic β-cell line derived from transgenic mice expressing a tetracy-cline-regulated oncogene. Proc Natl Acad Sci USA 92: 3576–3580

    Article  Google Scholar 

  188. Welsh M, Welsh N, Nilsson T, Arkhammar P, Pepinsky RB, Steiner DF, Berggren PO (1988) Stimulation of pancreatic islet beta-cell replication by oncogenes. Proc Natl Acad Sci USA 85: 116–120

    Article  PubMed  CAS  Google Scholar 

  189. Serup P, Jensen J, Andersen FG, Jaergensen MC, Blume N, Hoist JJ, Madsen OD (1996) Induction of insulin and islet amyloid polypeptide production in pancreatic islet glucagonoma cells by insulin promoter factor I. Proc Natl Acad Sci USA 93: 9015–9020

    Article  PubMed  CAS  Google Scholar 

  190. Csete ME, Afra R, Mullen Y, Drazan KE, Benhamou PY, Shaked A (1994) Adenoviral-mediated gene transfer to pancreatic islets does not alter islet function. Transplant Proc 26: 756–757

    PubMed  CAS  Google Scholar 

  191. Mirenda V, Charreau B, Sigalla J, Cassard A, Huvelin JM, David A, Soulilou JP, Le Mauff B, Anegon I (1996) Xenoreactivity in the pig islet to human combination: Feasibility of adenovirus-mediated gene transfer into pig islets. Transplant Proc 28: 808–810

    PubMed  CAS  Google Scholar 

  192. Korbutt GS, Smith DK, Rajotee RV, Elliott JF (1995) Expression of β-galactosidase in mouse pancreatic islets by adenoviral-mediated gene transfer. Transplant Proc 27: 3414

    PubMed  CAS  Google Scholar 

  193. Bosch A, McCray PB Jr, Chang SM, Ulich TR, Simonet WS, Jolly DJ, Davidson BL (1996) Proliferation induced by keratinocyte growth factor enhances in vivo retroviral-mediated gene transfer to mouse hepatocytes. J Clin Invest 98: 2683–2687

    Article  PubMed  CAS  Google Scholar 

  194. Gupta S, Wilson JM, Chowdhury JR (1992) Hepatocyte transplantation: Development of new systems for liver repopulation and gene therapy. Seminars in Liver Disease 12: 321–331

    Article  PubMed  CAS  Google Scholar 

  195. Wolff JA, Yee JK, Skelly HF, Moores JC, Respess JG, Friedmann T, Leffert H (1987) Expression of retrovirally transduced genes in primary cultures of adult rat hepatocytes. Proc Natl Acad Sci USA 84: 3344–3348

    Article  PubMed  CAS  Google Scholar 

  196. Peng H, Armentano D, MacKenzie-Graham L, Shen RF, Darlington G, Ledley FD, Woo SL (1988) Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes. Proc Natl Acad Sci USA 85: 8146–8150

    Article  PubMed  CAS  Google Scholar 

  197. Hatzoglou M, Lamers W, Bosch F, Wynshaw-Boris A, Clapp DW, Hanson RW (1990) Hepatic gene transfer in animals using retroviruses containing the promoter from the gene for phosphoenolpyruvate carboxykinase J Biol Chem 265: 17285–17293

    PubMed  CAS  Google Scholar 

  198. Armentano D, Thompson AR, Darlington G, Woo SL (1990) Expression of human factor IX in rabbit hepatocytes by retrovirus-mediated gene transfer: Potential for gene therapy of human hemophilia B. Proc Natl Acad Sci USA 87: 6141–6145

    Article  PubMed  CAS  Google Scholar 

  199. Kay MA, Baley P, Rothenberg S, Leland F, Fleming L, Parker Ponder K, Liu TJ, Finegold M, Darlington G, Pokorny W et al (1991) Expression of human α1-antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes. Proc Natl Acad Sci USA 89: 89–93

    Article  Google Scholar 

  200. Wilson JM, Johnston DE, Jefferson DM, Mulligan RC (1988) Correction of the genetic defect in hepatocytes from the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 85: 4421–4425

    Article  PubMed  CAS  Google Scholar 

  201. Grossman M, Raper SE, Kozarsky K, Stein EA, Engelhardt JF, Muller D, Lupien PJ, Wilson JM (1994) Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolemia. Nature Genetics 6: 335–341

    Article  PubMed  CAS  Google Scholar 

  202. Fabrega AJ, Fasbender AJ, Struble S, Zabner J (1996) Cationic lipid-mediated transfer of the hIL-10 gene prolongs survival of allogeneic hepatocytes in Nagase analbuminemic rats. Transplantation 62: 1866–1871

    Article  PubMed  CAS  Google Scholar 

  203. Shirashi M, Kusano T, Hara J, Hiroyasu S, Shao-ping M, Makino Y, Muto Y (1997) Adenovirus-mediated gene transfer using in-situ perfusion of the liver graft. Transplant International 10: 202–206

    Article  Google Scholar 

  204. Olthoff KM, Da Chen X, Gelman A, Turka L, Shaked A (1997) Adenovirus-mediated gene transfer of CTLA4Ig to liver allografts results in prolonged survival and local T-cell anergy. Transplant Proc 29: 1030–1031

    Article  PubMed  CAS  Google Scholar 

  205. Brenner MK, Heslop HE, Rill D, Li C, Nilson T, Roberts M, Smith C, Krance R, Rooney C (1994) Gene transfer and bone marrow transplantation. Cold Spring Harb Symp Quant Biol 59: 691–697

    Article  PubMed  CAS  Google Scholar 

  206. Rill DR, Moen RC, Buschle M, Bartholomew C, Foreman NK, Mirro J Jr, Krance RA, Ihle JN, Brenner MK (1992) An approach for the analysis of relapse and marrow reconstitution after autologous marrow transplantation using retrovirus-mediated gene transfer. Blood 79: 2694–2700

    PubMed  CAS  Google Scholar 

  207. Cornetta K, Srour EF, Moore A, Davidson A, Broun ER, Hromas R, Moen RC, Morgan RA, Rubin L, Anderson WF et al (1996) Retroviral gene transfer in autologous bone marrow transplantation for adult acute leukemia. Hum Gene Ther 7: 1323–1329

    Article  PubMed  CAS  Google Scholar 

  208. Fletcher FA, Moore KA, Williams DE, Anderson D, Maliszewski C, Belmont JW (1991) Effects of leukemia inhibitory factor (LIF) on gene transfer efficiency into murine hematolymphoid progenitors. Adv Exp Med Biol 292: 131–138

    Article  PubMed  CAS  Google Scholar 

  209. Luskey BD, Rosenblatt M, Zsebo K, Williams DA (1992) Stem cell factor, interleukin-3, and interleukin-6 promote retroviral-mediated gene transfer into murine hematopoietic stem cells. Blood 80: 396–402

    PubMed  CAS  Google Scholar 

  210. Drize N, Chertov J, Sadovnikova E, Tiessen S, Zander A (1997) Long-term maintenance of hematopoiesis in irradiated mice by retrovirally transduced peripheral blood stem cells. Blood 89: 1811–1817

    PubMed  CAS  Google Scholar 

  211. Yurasov S, Kollman TR, Kim A, Raker CA, Hachamovitch M, Wong-Staal F, Goldstein H (1997) Severe combined immunodeficiency mice engrafted with human T cells, B cells, and myeloid cells after transplantation with human fetal bone marrow or liver cells and implanted with human fetal thymus: A model for studying human gene therapy. Blood 89: 1800–1810

    PubMed  CAS  Google Scholar 

  212. Kuhr T, Dougherty GJ, Klingermann H-G (1994) Transfer of the tumor necrosis factor a gene into hematopoietic progenitor cells as a model for site-specific cytokine delivery after marrow transplantation. Blood 84: 2966–2970

    PubMed  CAS  Google Scholar 

  213. Rosenthal FM, Fruh R, Henschler R, Veelken H, Kulmburg P, Mackensen A, Gansbacher B, Mertelsmann R, Lindemannn A (1994) Cytokine therapy with gene-transfected cells: Single injection of irradiated granulocyte-macrophage colony-stimulating factor-transduced cells accelerates hematopoietic recovery after cytotoxic chemotherapy in mice. Blood 84: 2960–2965

    PubMed  CAS  Google Scholar 

  214. Spencer HT, Sleep SE, Rehg JE, Blakley RL, Sorrentino BP (1996) A gene transfer strategy for making bone marrow cells resistant to trimetrexate. Blood 87: 2579–2587

    PubMed  CAS  Google Scholar 

  215. Vinh DB, Mclvor RS (1993) Selective expression of methotrexate-resistant dihydrofolate reductase (DHFR) activity in mice transduced with DHFR retrovirus and administered methotrexate. J Pharmacol Exp Ther 267: 989–996

    PubMed  CAS  Google Scholar 

  216. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, Ponzoni M, Rossini S, Mavilio F, Traversari C et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276: 1719–1724

    Article  PubMed  CAS  Google Scholar 

  217. Fraser CC, Sykes M, Lee RS, Sachs DH, LeGuern C (1995) Specific unresponsiveness to a retrovirally-transferred class I antigen is controlled through the helper pathway. J Immunol 154: 1587–1595

    PubMed  CAS  Google Scholar 

  218. Smith CV, Nakajima K, Mixon A, Guzetta PC, Rosengard BR, Fishbein JM, Sachs DH (1992) Successful induction of long-term specific tolerance to fully allogeneic renal allografts in miniature swine. Transplantation 53: 438–444

    Article  PubMed  CAS  Google Scholar 

  219. Banerjee PT, Ierino F, Kaynor GC, Giovino M, Sablinski T, Emery DW, Rosa MD, LeGuern C, Sachs DH, Monroy RL (1996) Retrovirus-mediated gene transfer and expression of swine MHC Class II genes in CD34+ monkey stem cells. Transplant Proc 28: 747–748

    PubMed  CAS  Google Scholar 

  220. Salminen A, Elson HF, Mickley LA, Fojo AT, Gottesman MM (1991) Implantation of recombinant rat myocytes into adult skeletal muscle: a potential gene therapy. Hum Gene Ther 2: 15–26

    Article  PubMed  CAS  Google Scholar 

  221. Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125: 1275–1287

    Article  PubMed  CAS  Google Scholar 

  222. Yao SN, Kurachi K (1993) Implanted myoblasts not only fuse with myofibers but also survive as muscle precursor cells. J Cell Sci 105: 957–963

    PubMed  Google Scholar 

  223. Pagel CN, Morgan JE (1995) Myoblast transfer and gene therapy in muscular dystrophies. Microscopy Research and Technique 30: 469–479

    Article  PubMed  CAS  Google Scholar 

  224. Morgan, JE (1994) Cell and gene therapy in Duchenne muscular dystrophy. Hum Gene Ther 5: 165–173

    Article  PubMed  CAS  Google Scholar 

  225. Law PK, Goodwin TG, Fang Q, Hall TL, Quinley T, Vastagh G, Duggirala V, Larkin C, Florendo JA, Li L et al (1997) First human myoblast transfer therapy continues to show dystrophin after 6 years. Cell Transplant 6: 95–100

    Article  PubMed  CAS  Google Scholar 

  226. Dai Y, Roman M, Naviaux RK, Verma IM (1992) Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantation in vivo. Proc Natl Acad Sci USA 89: 10892–10895

    Article  PubMed  CAS  Google Scholar 

  227. Yao SN, Smith KJ, Kurachi K (1994) Primary myoblast-mediated gene transfer: persistent expression of human factor IX in mice. Gene Ther 1: 99–107

    PubMed  CAS  Google Scholar 

  228. Wang JM, Zheng H, Blaivas M, Kurachi K (1997) Persistent systemic production of human factor IX in mice by skeletal myoblast-mediated gene transfer: feasibility of repeat application to obtain therapeutic levels. Blood 90: 1075–1082

    PubMed  CAS  Google Scholar 

  229. Baru M, Sha’anani J, Nur I (1995) Retroviral-mediated in vivo gene transfer into muscle cells and synthesis of human factor IX in mice. Intervirology 38: 356–360

    Article  PubMed  CAS  Google Scholar 

  230. Dhawan J, Pan LC, Pavlath GK, Travis MA, Lanctot AM, Blau HM (1991) Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science 254: 1509–1512

    Article  PubMed  CAS  Google Scholar 

  231. Dahler A, Wade RP, Muscat GE, Waters MJ (1994) Expression vectors encoding human growth hormone (hGH) controlled by human muscle-specific promoters: prospects for regulated production of hGH delivered by myoblast transfer or intravenous injection. Gene 145: 305–310

    Article  PubMed  CAS  Google Scholar 

  232. Al-Hendy A, Hortelano G, Tannenbaum GS, Chang PL (1995) Correction of the growth defect in dwarf mice with nonautologous microencapsulated myoblasts—an alternate approach to somatic gene therapy. Hum Gene Ther 6: 165–175

    Article  PubMed  CAS  Google Scholar 

  233. Hamamori Y, Samal B, Tian J, Kedes L (1994) Persistent erythropoiesis by myoblast transfer of erythropoietin cDNA. Hum Gene Ther 5: 1349–1356

    Article  PubMed  CAS  Google Scholar 

  234. Hamamori Y, Samal B, Tian J, Kedes L (1995) Myoblast transfer of human erythropoietin gene in a mouse model of renal failure. J Clin Invest 95: 1808–1813

    Article  PubMed  CAS  Google Scholar 

  235. Simonson GD, Groskreutz DJ, Gorman CM, MacDonald MJ (1996) Synthesis and processing of genetically modified human proinsulin by rat myoblast primary cultures. Hum Gene Ther 7: 71–78

    Article  PubMed  CAS  Google Scholar 

  236. Shull RM, Lu X, McEntee MF, Bright RM, Pepper KA, Kohn DB (1996) Myoblast gene therapy in canine mucopolysaccharidosis. I: Abrogation by an immune response to alpha-L-iduronidase. Hum Gene Ther 7: 1595–1603

    Article  PubMed  CAS  Google Scholar 

  237. Naffakh N, Bohl D, Salvetti A, Moullier P, Danos O, Heard JM (1994) Gene therapy for lysosomal disorders. Nouv Rev Fr Hematol 36(1): S11–S16

    PubMed  CAS  Google Scholar 

  238. Jiao S, Gurevich V, Wolff JA (1993) Long-term correction of rat model of Parkinson’s disease by gene therapy. Nature 362: 450–453

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Bromberg, J.S., DeBruyne, L.A., Sung, R.S., Qin, L. (2000). Gene transfer to facilitate transplantation. In: Evans, C.H., Robbins, P.D. (eds) Gene Therapy in Inflammatory Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8478-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8478-5_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9584-2

  • Online ISBN: 978-3-0348-8478-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics