Skip to main content

New results on wave diffraction by canonical obstacles

  • Conference paper
The Maz’ya Anniversary Collection

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 110))

Abstract

Reaching back to A. SOMMMERFELD’S habilitation thesis [30] in 1896 mathematical diffraction theory started by formulating boundary and transmission problems for wave equations in canonical domains with semi-infinite boundaries, like planes, wedges, halfplanes, cones, octants etc. During the last decade different boundary-transmission conditions were involved and explicit form solutions found using integral transforms and factorization techniques for Fourier symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach, J.D.: Wave propagation in elastic solids, North Holland 1984.

    Google Scholar 

  2. Budaev, B., Diffraction by wedges, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, John Wiley & Sons, New York 1995.

    MATH  Google Scholar 

  3. Dos Santos, A.F; Lebre, A.B.; Teixeira, F.S, The Diffraction Problem for a Half-Plane with Different Face Impedances Revisited, J. Math. Anal. Appl. 140 (1989), 485–509.

    Article  MathSciNet  MATH  Google Scholar 

  4. ERBE, C., On Sommerfeld’s Half-Plane Problem for the Equations of Linear Thermoelasticity, Math. Methods Appl. Sci. 18 (1995), 1215–1237.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gilliam, D.S.; Schulenberger, J.R., Electromagnetic waves in a three-dimensional half space with a dissipative boundary, J. Math. Anal. Appl. 89 (1982), 129–185.

    Article  MathSciNet  MATH  Google Scholar 

  6. Gilliam, D.S.; Schulenberger, J.R., (1986). The propagation of electromagnetic waves through, along, and over a three-dimensional conducting half space. EM waves over a conducting earth, Meth. u. Verf. d. Math. Phys., Bd. 30, Peter Lang, Frankfurt am Main, 1986.

    Google Scholar 

  7. Guillot, S.C.; Wilcox, C.H., Spectral analysis of the Epstein operator, Proc. Roy. Soc. Edinburgh, Sect. A 80 (1978), 85–98.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoop, A.T. De, Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory, Ph.D.-thesis, Delft University of Technology, Delft, The Netherlands 1958.

    Google Scholar 

  9. Leis, R., Initial Boundary Value Problems in Mathematical Physics, Wiley $ Sons Ltd. and B.G. Teubner, 1986.

    Google Scholar 

  10. Maliuzhinets, G.D., Inversion Formula for the Sommerfeld Integral, Sov. Phys. Dokl. 3 (1958), 52–56.

    Google Scholar 

  11. Mark, J.; Meister, E., Initial-boundary value problems in linear viscoelasticity on the half-space, Math. Methods Appl. Sci. 18 (1995), 1181–1214.

    Article  MathSciNet  MATH  Google Scholar 

  12. Meister, E., Einige gelöste und ungelöste Probleme der mathematischen Beugungstheorie, Expo. Math. 5 (1987), 193–237.

    MathSciNet  MATH  Google Scholar 

  13. Mikhlin, S.G.; Prössdorf, Singular Integral Operators, Springer, Berlin 1986 (1980 in German).

    Book  Google Scholar 

  14. Meister, E.; Rottbrand, K., Elastodynamical Scattering by N Half-Planes in3: I. Equivalent matrix Wiener-Hopf factorization problems, Math. Nachr. 177 (1996), 189–232.

    Article  MathSciNet  MATH  Google Scholar 

  15. Meister, E.; Rottbrand, K., Elastodynamical Scattering by N Half-Planes in3: II. Explicit solutions for N = 2 by explicit symbol factorization, Integr. eq. oper. theory 29 (1997), 70–109.

    Article  MathSciNet  MATH  Google Scholar 

  16. Meister, E.; Rottbrand, K., Speck, F.-O., Wiener-Hopf equations for wave scattered by a system of parallel Sommerfeld half-planes, Math. Methods Appl. Sci. 14 (1991), 525–552.

    Article  MathSciNet  MATH  Google Scholar 

  17. Meister, E.; Speck, F.-O., Some multidimensional Wiener-Hopf equations with applications, Trends Appl. Pure Math. Mech. 2. Proc. Conf. Kozubik (Poland) 1977, Pitman, London 1979, 217–262.

    Google Scholar 

  18. Meister, E.; Speck, F.-O., Modern Wiener-Hopf methods in diffraction theory, In: Ordinary and Partial Differential Equations, vol. 2, Proceedings of a Conference in Dundee, eds. B.D. Sleeman, R.J. Jarvis, pp. 130–172, Research Notes in Mathematics (London, Longman), 1989.

    Google Scholar 

  19. Meister, E.; Speck, F.-O.; Teixeira, F.S., Wiener-Hopf-Hankel operators for some wedge diffraction problems with mixed boundary conditions, J. Integral Equations Appl. 4 (1992), 229–255.

    Article  MathSciNet  MATH  Google Scholar 

  20. Passow, A., Herleitung und Anwendung der höheren Leontovich Randbedingung. Formulierung und Ansätze zur Lösung des Sommerfeldschen Halbebenenproblems bei Vorgabe von höheren Leontovich Randbedingungen auf beiden Ufern, Diploma thesis, Department of Mathematics, Technical University Darmstadt, 1994.

    Google Scholar 

  21. Passow, A., Das Sommerfeldsche Halbebenen Problem nach Herleitung anisotroper Leontovich Randbedingungen für elektromagnetische Felder, Doctoral thesis, Department of Mathematics, Technical University Darmstadt, 1998.

    Google Scholar 

  22. Rottbrand, K., A Canonical Diffraction Problem with Two Media, Math. Methods Appl. Sci. 19 (1996), 1217–1224.

    Article  MathSciNet  MATH  Google Scholar 

  23. Rottbrand, K., Rawlins’ Problem for Half-Plane Diffraction: Its Generalized Eigenfunctions with Real Wave Numbers, Math. Methods Appl. Sci. 20 (1997), 989–1014.

    Article  MathSciNet  MATH  Google Scholar 

  24. Rottbrand, K., Time-dependent Plane Wave Diffraction by a Half-Plane: Explicit Solution for Rawlins’ Mixed Initial Boundary Value Problem, Z. angew. Math. Mech. 78 (1998), 321–334.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rottbrand, K., Exact Solution for Time-dependent Diffraction of Plane Waves by Semi-infinite Soft/Hard Wedges and Half-Planes, Preprint 1984, Department of Mathematics, Technical University Darmstadt, 1998.

    Google Scholar 

  26. Senior, T.B.A., Diffraction by an Imperfectly Conducting Wedge, Comm. Pure Appl. Math. XII (1959), 337–372.

    Article  MathSciNet  Google Scholar 

  27. Senior, T.B.A.; Volakis, J.L., Approximate boundary conditions in electromagnetics, The Institution of Electrical Engineers, London, UK 1995.

    Book  MATH  Google Scholar 

  28. Serbest, A., Direct and inverse electromagnetic scattering, Proceedings of the workshop, September 24–30, 1995, Gebze, Turkey, Pitman Research Notes in Mathematics Series, 361, Harlow: Longman, 1996.

    MATH  Google Scholar 

  29. Shestopalov, V.P.; Shestopalov, YU.V., Spectral theory and excitation of open structures, IEE Electromagnetic Waves Series. 42. London: IEE, The Institution of Electrical Engineers, 399 p. (1996).

    Book  MATH  Google Scholar 

  30. Sommerfeld, A., Mathematische Theorie der Diffraction, Math. Ann. 47 (1896), 317–447.

    Article  MathSciNet  MATH  Google Scholar 

  31. Sommerfeld, A., Theoretisches über die Beugung der Röntgenstrahlen, Z. f. Mathematik und Physik, 46 (1901), 11–97.

    MATH  Google Scholar 

  32. Speck, F.-O., Sommerfeld diffraction problems with first and second kind boundary conditions, SIAM J. Math. Anal. 20 (1989), 396–407.

    Article  MathSciNet  MATH  Google Scholar 

  33. Teixeira, F.S., Generalized Factorization for a Class of Symbols in [PC(ℝ)]2×2, Appl. Anal. 36 (1990), 95–117.

    Article  MathSciNet  MATH  Google Scholar 

  34. Teixeira, F.S., Diffraction by a rectangular wedge: Wiener-Hopf-Hankel formulation, Integr. Eq. Oper. Theory 14 (1991), 436–454.

    Article  MathSciNet  MATH  Google Scholar 

  35. Wilcox, C.H., Spectral analysis of the Pekeris operator in the theory of acoustic wave propagation in shallow water, Arch. for Rat. Mech. and Anal. 60 (1976), 259–300.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Meister, E., Passow, A., Rottbrand, K. (1999). New results on wave diffraction by canonical obstacles. In: Rossmann, J., Takáč, P., Wildenhain, G. (eds) The Maz’ya Anniversary Collection. Operator Theory: Advances and Applications, vol 110. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8672-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8672-7_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9725-9

  • Online ISBN: 978-3-0348-8672-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics