Skip to main content

Hematopoietic cells

  • Chapter
Apoptosis and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 98 Accesses

Abstract

Hematopoiesis represents a dynamic example of tissue homeostasis in which cells undergo constant cell proliferation and death. In the normal physiological condition, a small fraction of blood cells are steadily removed from the body and replaced by new cells generated from the bone marrow, the site of human hematopoiesis. This normal turnover is maintained by a balance between the rates of proliferation and renewal of progenitor cells and the rate of death of more differentiated cells. With the loss of mature blood cells the number of functional cells decreases and pluripotent progenitors supply their replacements through proliferation and differentiation into mature cells. In certain “stress” conditions, the bone marrow can expand a specific sub-population of hematopoietic cells to more than ten times of its normal level. When such an increased physiological demand exists, specific cell types have “unbalanced” rates of proliferation and death, such that the death rate is decreased relative to the proliferation rate and expansion of the specific population results. As the expanding cell population reaches the point of meeting the increased demand, the drive for expansion subsides. Then the death rate is increased relative to the proliferation rate until the cell number returns to that of the normal basal homeostasis. The balance between proliferation and death is partially regulated by availability of soluble hematopoietic growth factors. Because blood cells can mediate various inflammatory reactions, extensive turnover and expansion of hematopoietic cells occur during inflammatory states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bondurant M, Koury MJ (1998) Origin and development of blood cells. In: Lee GR, Foerster J, Greer JP, Lukens JN, Rodgers G, Paraskevas F (eds): Wintrobe’s clinical hematology, 10th edition. Williams and Wilkins, Baltimore, 145–168

    Google Scholar 

  2. Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81: 2844–2853

    PubMed  CAS  Google Scholar 

  3. Tilg H, Peschel C (1996) Interferon-alpha and its effects on the cytokine cascade: a proand anti-inflammatory cytokine. Leuk Lymphoma 23: 55–60

    Article  PubMed  CAS  Google Scholar 

  4. Cook DN (1996) The role of MIP-1-alpha in inflammation and hematopoiesis. J Leukocyte Biol 59: 61–66

    PubMed  CAS  Google Scholar 

  5. Bertero MT, Caligaris-Cappio F (1997) Anemia of chronic disorders in systemic autoimmune diseases. Haematologica 82: 375–381

    PubMed  CAS  Google Scholar 

  6. Metcalf D (1993) Hematopoietic regulators: Redundancy or subtlety? Blood 82: 3515–3523

    PubMed  CAS  Google Scholar 

  7. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D (1996) Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietin receptor c-Mpl. Blood 87: 2162–2170

    PubMed  CAS  Google Scholar 

  8. Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, Fowler KJ, Basu S, Zhan YF, Dunn AR (1994) Mice lacking granulocyte colony stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor deficiency, and impaired neutrophil mobilization. Blood 84: 1737–1746

    PubMed  CAS  Google Scholar 

  9. Nishinakamura R, Miyajima A, Mee PJ, Tybulewicz VU, Murray R (1996) Hematopoiesis in mice lacking the entire granulocyte-macrophage clonony-stimulating factor/interleukin-3/interleukin-5 functions. Blood 88: 2458–2464

    PubMed  CAS  Google Scholar 

  10. Schwarzmeier JD (1996) The role of cytokines in haematopoiesis. Eur J Haematol 57: 69–74

    Article  Google Scholar 

  11. Nagata Y, Moriguchi T, Nishida E, Todokoro K (1997) Activation of p38 MAP kinase pathway by erythropoietin and interleukin-3. Blood 90: 929–934

    PubMed  CAS  Google Scholar 

  12. Penta K, Sawyer ST (1995) Erythropoietin induces the tyrosine phosphorylation, nuclear translocation, and DNA binding of STAT-1 and STAT-5 in erythroid cells. J Biol Chem 270:31282–31287

    Article  PubMed  CAS  Google Scholar 

  13. Sattler M, Durstin MA, Frank DA, Okuda K, Kaushansky K, Salgia R, Griffin JD (1995) The thrombopoietin receptor c-MPL activates JAK2 and TYK2 tyrosine kinase. Exp Hematol 23: 1040–1048

    PubMed  CAS  Google Scholar 

  14. Kieran MW, Perkins AC, Orkin SH, Zon LI (1996) Thrombopoietin rescues erythroid colonies from erythropoietin receptor deficient embryos. Proc Natl Acad Sci USA 93: 9126–9131

    Article  PubMed  CAS  Google Scholar 

  15. Shimizu R, Komatsu N, Nakamura Y, Nakauchi H, Nakalbeppu Y, Miura Y (1996) Role of c-jun in the inhibition of erythropoietin receptor-mediated apoptosis. Biochem Biophys Res Comm 222: 1–6

    Article  PubMed  CAS  Google Scholar 

  16. Sachs L (1996) The control of hematopoiesis and leukemia: from basic biology to the clinic. Proc Natl Acad Sci USA 93: 4742–4749

    Article  PubMed  CAS  Google Scholar 

  17. Lotem J, Shabo Y, Sachs L (1991) The network of hemopoietic regulatory proteins in myeloid cell differentiation. Cell Growth Differ 2: 421–427

    PubMed  CAS  Google Scholar 

  18. Kaushanski K, Lin N, Adamson JW (1988) Interleukin-1 stimulates fibroblasts to synthesize granulocyte-macrophage and granulocyte colony-stimulating factor. J Clin Invest 81: 92–97

    Article  Google Scholar 

  19. Dan K, Gomi S, Inokuchi K, Ogata K, Yamada T, Ohki I, Hasegawa S, Nomura T (1995) Effects of interleukin-1 and tumor necrosis factor on megakaryocytopoiesis: mechanism of reactive thromocytosis. Acta Haematol 93: 67–72

    Article  PubMed  CAS  Google Scholar 

  20. Jacobsen SEMW, Ruscetti FW, Dubois CM, Lee J, Boone TC, Keller JR (1991) Transforming growth factor-beta trans-modulates the expression of colony stimulating factor receptors on murine hematopoietic progenitor cell lines. Blood 77: 1706–1716

    PubMed  CAS  Google Scholar 

  21. Aman MJ, Keller U, Derigs G, Mohamadzadeh M, Huber C, Peschel C (1994) Regulation of cytokine expression by interferon alpha in human bone marrow stromal cells: inhibition of hematopoietic growth factors and induction of IL-1 receptor antogonist. Blood 83: 4142–4150

    Google Scholar 

  22. Mangan DF, Wahl SM (1991) Differential regulation of human monocyte programmed cell death (apoptosis) by chemotactic factors and pro-inflammatory cytokines. J Immunol 147: 3408–3412

    PubMed  CAS  Google Scholar 

  23. Selleri C, Sato T, Anderson A, Young NS, Maciejewski JP (1995) Interferon-gamma and tumor necrosis factor-a suppress both early and late stages of hematopoiesis and induce programmed cell death. J Cell Physiol 165: 538–546

    Article  PubMed  CAS  Google Scholar 

  24. Nagafuji K, Shibuya T, Harada M, Mizuno S-I, Takenaka K, Miyamoto T, Okamura T, Gondo H, Niho Y (1995) Functional expression of Fas antigen (CD95) on hematopoietic progenitor cells. Blood 86: 883–889

    PubMed  CAS  Google Scholar 

  25. Mangan DF, Robertson B, Wahl SM (1992) IL-4 enhances programmed cell death (apoptosis) in stimulated human monocytes. J Immunol 148: 1812–1816

    PubMed  CAS  Google Scholar 

  26. Maciejewski JP, Selleri C, Anderson A, Young NS (1995) Fas antigen expression on CD34+human marrow cells is induced by interferon-gamma and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 85: 3183–3190

    PubMed  CAS  Google Scholar 

  27. Farrell AJ, Blake DR (1996) Nitric oxide. Ann Rheum Dis 55: 7–20

    Article  PubMed  CAS  Google Scholar 

  28. Maciejewski JP, Selleri C, Sato T, Cho HJ, Keefer LK, Nathan CF, Young NS (1995) Nitric oxide suppression of human hematopoiesis in vitro. Contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha. J Clin Invest 96: 1085–1092

    Article  PubMed  CAS  Google Scholar 

  29. Punjabi CJ, Laskin DL, Heck DE, Laskin JD (1992) Production of nitric oxide by murine bone marrow cells: inverse correlation with cellular proliferation. J Immunol 149: 2179–2184

    PubMed  CAS  Google Scholar 

  30. Shami PJ, Weinberg JB (1996) Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34+ human bone marrow cells. Blood 87: 977–982

    PubMed  CAS  Google Scholar 

  31. Lee JW, Beckham C, Michel BR, Rosen H, Deeg HJ (1997) HLA-DR-mediated signals for hematopoiesis and induction of apoptosis involve but are not limited to a nitric oxide pathway. Blood 90: 217–225

    PubMed  CAS  Google Scholar 

  32. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin J-J, Garrone P, Garcia E, Saeland S et al (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopietic cytokines. J Exp Med 183: 2593–2603

    Article  PubMed  CAS  Google Scholar 

  33. Rollins BJ (1997) Chemokines. Blood 90: 909–928

    PubMed  CAS  Google Scholar 

  34. Broxmeyer HE, Lu L, Platzer E, Feit C, Juliano L, Rubin BY (1983) Comparative analysis of the influcences of human gamma, alpha and beta interferons on human multipotential (CFU-GEMM), erythroid (BFU-E) and granulocyte-macrophage (CFU-GM) progenitor cells. J Immunol 131: 1300–1305

    PubMed  CAS  Google Scholar 

  35. Cook DN, Beck MA, Coffman TM, Kirby SL, Sheridan JF, Pragnell IB, Smithies B (1995) Requirement of MIP-la for an inflammatory response to viral infection. Science 269: 1583–1585

    Article  PubMed  CAS  Google Scholar 

  36. Wiktor-Jedrzejczak W, Ratajczak MZ, Ptasznik A, Sell KW, Ahmed-Ansari A, Ostertag W (1992) CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages. Exp Hematol 20: 1004–1010

    PubMed  CAS  Google Scholar 

  37. Tushinski RJ, Oliver IT, Gilbert LJ, Tynan PW, Warner JR, Stanley ER (1982) Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28: 71–81

    Article  PubMed  CAS  Google Scholar 

  38. Clutterbuck EJ, Hirst EM, Sanderson CJ (1989) Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6 and GM-CSF. Blood 73: 1504–1512

    PubMed  CAS  Google Scholar 

  39. Sonoda Y, Arai N, Ogawa M (1989) Humoral regulation of eosinophilopoiesis in vitro: analysis of the targets of interleukin-3, granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-5. Leukemia 3: 14–18

    PubMed  CAS  Google Scholar 

  40. Tai PC, Sun L, Spry CJ (1991) Effects of IL-5, granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro. Clin Exp Immunol 85: 312–316

    Article  PubMed  CAS  Google Scholar 

  41. De Andres B, Mueller AL, Blum A, Weinstock J, Verbeek S, Sandor M, Lynch RG (1997) FcrII (CD32) is linked to apoptotic pathways in murine granulocyte precursors and mature eosinophils. Blood 90: 1267–1274

    PubMed  Google Scholar 

  42. Denburg JA (1992) Basophil and mast cell lineage in vitro and in vivo. Blood 79: 846–860

    PubMed  CAS  Google Scholar 

  43. Sanderson CJ (1992) Interleukin-5, eosinophils and disease. Blood 79: 3101–3109

    PubMed  CAS  Google Scholar 

  44. Sher A, Coffman RL, Hieny S, Scott P, Cheever AW (1990) Interleukin-5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proc Natl Acad Sci USA 87: 61–65

    Article  PubMed  CAS  Google Scholar 

  45. Rennick DM, Thompson-Snipes LA, Coffman RL, Seymour BWP, Jackson JD, Hudak S (1990) In vivo administration of antibody to interleukin-5 inhibits increased generation of eosinophils and their progenitors in bone marrow of parasitized mice. Blood 76: 312–316

    PubMed  CAS  Google Scholar 

  46. Dent LA, Strath M, Mellor AL, Sanderson CJ (1990) Eosinophilia in transgenic mice expressing interleukin-5. J Exp Med 172: 1425–1431

    Article  PubMed  CAS  Google Scholar 

  47. Vaux DL, Lalot PA, Cory S, Johnson GR (1990) In vivo expression of interleukin-5 induces an eosinophilia and expanded By-1B lineage populations. Int Immunol 2: 965–971

    Article  PubMed  CAS  Google Scholar 

  48. Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourn EA, Dai WJ, Ovington KS, Behm CA, Kohler G, Young IG, Matthaei KI (1996) IL-5 deficient mice have a developmental defect in CDS+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell response. Immunity 4: 15–24

    Article  PubMed  CAS  Google Scholar 

  49. Moqbel R, Hamid Q, Ying S, Barkans J, Hartnell A, Tsicopoulos A, Wardlaw AJ, Kay AB (1991) Expression of mRNA and immunoreactivity for the granulocyte/macrophage colony-stimulating factor in activated human eosinophils. J Exp Med 174: 749–752

    Article  PubMed  CAS  Google Scholar 

  50. Broide DH, Paire MM, Firestein GS (1992) Eosinophils express interleukin 5 and granulocyte-macrophage colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics. J Clin Invest 90: 1414–1424

    Article  PubMed  CAS  Google Scholar 

  51. Alam R, Forsythe P, Stafford S, Fukuda Y (1994) Transforming growth factor beta abrogates the effects of hematopoietins on eosinophils and induces their apoptosis. J Exp Med 179: 1041–1045

    Article  PubMed  CAS  Google Scholar 

  52. Shull MM, Ormsby L, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359: 693–699

    Article  PubMed  CAS  Google Scholar 

  53. Nagafuji K, Shibuya T, Harada M, Mizuno S, Takenaka K, Miyamoto T, Okamura T, Gondo H, Niho Y (1995) Functional expression of Fas antigen (CD95) on hematopoietic progenitor cells. Blood 86: 883–889

    PubMed  CAS  Google Scholar 

  54. Druilhe A, Cai A, Haile S, Chouaib S, Pretolani M (1996) Fas-mediated apoptosis in cultured human eosinophils. Blood 87: 2822–2830

    PubMed  CAS  Google Scholar 

  55. Koury MJ, Bondurant MC (1988) The maintenance by erythropoietin of viability, proliferation and maturation of murine erythroid precursor cells. J Cell Physiol 137: 65–74

    Article  PubMed  CAS  Google Scholar 

  56. Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248: 378–381

    Article  PubMed  CAS  Google Scholar 

  57. Wu H, Liu X, Jaenisch R, Lodish HF (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83: 59–67

    Article  PubMed  CAS  Google Scholar 

  58. Faquin WC, Schneider TJ, Goldberg MA (1992) Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood 79: 1987–1994

    PubMed  CAS  Google Scholar 

  59. Dai CH, Krantz SB, Kollar K, Price JO (1995) Stem cell factor can overcome inhibition of highly purified human burst-forming units-erythroid by interferon gamma. J Cell Physiol 165: 323–332

    Article  PubMed  CAS  Google Scholar 

  60. Means RT, Krantz SB (1991) Inhibition of human erythroid colony forming units by gamma interferon can be corrected by recombinant human erythropoietin. Blood 78: 2564–2567

    PubMed  CAS  Google Scholar 

  61. Nakao S, Yamaguchi M, Shiobara S, Yokoi T, Miyawaki T, Taniguchi T, Matsuda T (1992) Interferon-gamma gene expression in unstimulated bone marrow mononuclear cells predicts a good response to cyclosporine therapy in aplastic anemia. Blood 79: 2532–2535

    PubMed  CAS  Google Scholar 

  62. Selleri C, Maciejewski JP, Sato T, Young NS (1996) Interferon-gamma constitutively expressed in the stromal microenvironment of human marrow cultures mediates potent hematopoietic inhibition. Blood 87: 4149–4157

    PubMed  CAS  Google Scholar 

  63. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D (1996) Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryopoiesis in mice lacking the thrombopoietin receptor c-mpl. Blood 87: 2162–2170

    PubMed  CAS  Google Scholar 

  64. Borge OJ, Ransfjell V, Jacobsen SEW (1997) Ability of early acting cytokines to directly promote survival and suppress apoptosis of human primitive CD34+CD38-bone marrow cells with multilineage potential at the single-cell level: key role of thrombopoietin. Blood 90: 2282–2292

    PubMed  CAS  Google Scholar 

  65. Debili N, Coulombel JH, Croisille L, Katz A, Guichard J, Breton-Gorius J, Vainchencker W (1996) Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood 88: 1284–1296

    PubMed  CAS  Google Scholar 

  66. Fibbe WE, Heemskerk DP, Laterveer L, Pruijt JF, Foster D, Kaushansky K, Willemze R (1995) Accelerated reconstitution of platelets and erythrocytes after synergistic transplantation of bone marrow cells derived from thrombopoietin pretreated donor mice. Blood 86: 3308–3313

    PubMed  CAS  Google Scholar 

  67. Kaushansky K, Broudy VC, Grossmann A, Humes J, Lin N, Ren HP, Bailey MC, Papayannopoulou T, Forstrom JW, Sprugel KH (1995) Thrombopoietin expands erythroid progenitors, increases red cell production and enhances erythroid recovery after myelosuppressive therapy. J Clin Invest 96: 1683–1687

    Article  PubMed  CAS  Google Scholar 

  68. Kobayashi M, Laver JH, Kato T, Miyazaki H, Ogawa M (1995) Recombinant human thrombopoietin (Mpl ligand) enhances proliferation of erythoid progenitors. Blood 86: 2494–2499

    PubMed  CAS  Google Scholar 

  69. Ratajczak MZ, Ratajczak J, Marlicz W, Pletcher CHJ, Machalinski B, Moore J, Hung H-L, Gewirtz AM (1997) Recombinant human thrombopoietin (TPO) stimulates erythropoiesis by inhibiting erythroid progenitor cell apoptosis. Br J Haematol 98: 8–17

    Article  PubMed  CAS  Google Scholar 

  70. Harker LA, Finch CA (1969) Thrombokinetics in man. J Clin Invest 48: 963–974

    Article  PubMed  CAS  Google Scholar 

  71. Odell TT, McDonald TP, Howsden FL (1964) Native and foreign stimulators of platelet production. J Lab Clin Med 64: 418–424

    PubMed  CAS  Google Scholar 

  72. Abildgaard CF, Simone JV (1967) Thrombopoiesis. Semin Hematol 4: 424–452

    CAS  Google Scholar 

  73. Zsebo KM, Yushenkoff VN, Schiffer S, Chang D, McCall E, Dinarello CA, Brown MA, Altrock B, Bagby GCJ (1988) Vascular endothelial cells and granulopoiesis: interleukin1 stimulates release of G-CSF and GM-CSF. Blood 71: 99–103

    PubMed  CAS  Google Scholar 

  74. Ku H, Yonemura Y, Kaushansky K, Ogawa M (1996) Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopietic progenitors of mice. Blood 87: 4544–4551

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Park, D.J., Koury, M.J. (1999). Hematopoietic cells. In: Winkler, J.D. (eds) Apoptosis and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8741-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8741-0_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9752-5

  • Online ISBN: 978-3-0348-8741-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics