Skip to main content

The evolution of plants in metal-contaminated environments

  • Chapter
Environmental Stress, Adaptation and Evolution

Part of the book series: Experientia Supplementum ((EXS,volume 83))

Summary

There are many areas of the world where the soil is naturally, or through anthropogenic activity, contaminated with metals. Metals are toxic to plants in excess, and the consequence has been that many species found on normal soils are excluded from these areas. The plants that can grow on these soils can normally be shown to have evolved tolerance to the metals in excess, though there are some species which may be constitutively able to tolerate high metal levels, and there is some evidence for environmentally induced tolerance in some species. Tolerance is generally under major gene control, though the degree of tolerance shown by a plant will be affected by minor genes as well, at least some of which act hypostatically to the major tolerance locus. The major tolerance loci generally are specific, so that where plants show tolerance to more than one metal, it is because they have evolved independent tolerances to more than one metal. Co-tolerance, where one gene gives pleiotropic tolerance to more than one metal, is probably rare. The mechanism of tolerance is in most cases unknown, and the problems of studying this phenomenon are discussed. There is circumstantial evidence that tolerance involves a cost, in that tolerant plants are at a selective disadvantage in an uncontaminated environment. It has not, however, been possible to establish the reason or basis of this cost. The ability of a species to evolve tolerance seems to depend on the presence of tolerance genes at low frequency in normal populations prior to the selective agent being imposed. In areas which have been naturally contaminated for very long periods, endemic species restricted to the toxic environment are found (edaphic endemics). The evolutionary processes leading to these, and the difference between an endemic and an ecotype, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Hiyaly, S.A., McNeilly, T. and Bradshaw, A.D. (1988) The effects of zinc contamination from electricity pylons: Evolution in a replicated situation. New Phytol. 110:571–580.

    Article  CAS  Google Scholar 

  • Al-Hiyaly, S.A., McNeilly, T., Bradshaw, A.D. and Mortimer, A.M. (1993) The effect of zinc contamination from electricity pylons: Genetic constraints on selection for zinc tolerance. Heredity 70:22–32.

    CAS  Google Scholar 

  • Allen, W.R. and Sheppard, P.M. (1971) Copper tolerance in some Californian populations of the monkey flower Mimulus guttatus. Proc. Soc. Lond. B D177:177 —196.

    Article  Google Scholar 

  • Antonovics, J., Bradshaw, A.D. and Turner, R.G. (1971) Heavy metal tolerance in plants. Adv. Ecol. Res. 7 : 1–85.

    Article  Google Scholar 

  • Baker, A.J.M. (1987) Metal tolerance. New Phytol. 106 (Suppl.): 93 —111.

    Article  Google Scholar 

  • Baker, A.J.M. and Proctor, J. (1990) The influence of cadmium, copper, lead and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Syst. Evol. 173: 91–108.

    Article  CAS  Google Scholar 

  • Baker, A.J.M. and Walker, P.L. (1989) Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity. Chem. Spec. Bioavail. 1:7 -17.

    CAS  Google Scholar 

  • Baker, A.J.M., Grant, C.J., Martin, M.H., Shaw, S.C. and Whitebrook, J. (1986) Induction and loss of cadmium tolerance in Holcus lanatus L. and other grasses. New Phytol. 102 : 575–587.

    Article  CAS  Google Scholar 

  • Bradshaw, A.D. (1952) Populations of Agrostis tenuis resistant to lead and zinc poisoning. Nature 169:1098.

    Google Scholar 

  • Bradshaw, A.D. (1991) Genostasis and the limits to evolution. Philos. Trans. R. Soc. Lond. B 333:289–305.

    Article  CAS  Google Scholar 

  • Brown, M.T. and Wilkins, D.A. (1985) Zinc tolerance of mycorrhizal Betula spp. New Phytol. 99:101–106.

    Article  CAS  Google Scholar 

  • Chapin, F.S. III. (1991) Integrated responses of plants to stress. BioScience 41:29–36.

    Article  Google Scholar 

  • de Vos, C.H.R., Schat, H., Vooijs, R. and Ernst, W.H.O. (1989) Copper-induced damage to the permeability barrier in roots of Silene cucubalus. J Plant Physiol. 135:164–169.

    Article  Google Scholar 

  • Delhaize, E., Ryan, P.R. and Randall, P.J. (1993) Aluminium tolerance in wheat (Triticum aestivum L.). II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702.

    PubMed  CAS  Google Scholar 

  • Denny, H.J. and Wilkins, D.A. (1987a) Zinc tolerance in Betula spp. I. Effect of external concentration of zinc on growth and uptake. New Phytol. 106:517–524.

    CAS  Google Scholar 

  • Denny, H.J. and Wilkins, D.A. (1987b) Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol. 106:545–553.

    CAS  Google Scholar 

  • Dickinson, N.M., Turner, A.P., Watmough, S.A. and Lepp, N.W. (1992) Acclimation of trees to pollution stress: Cellular metal tolerance traits. Ann. Bot. 70:569–572.

    CAS  Google Scholar 

  • Ernst, W.H.O., Schat, H. and Verkleij, J.A.C. (1990) Evolutionary biology of metal resistance in Silene vulgaris. Evol. Trends Plants 4:45–50.

    Google Scholar 

  • Gartside, D.W. and McNeilly, T. (1974) The potential for evolution of heavy metal tolerance in plants. II. Copper tolerance in normal populations of different plant species. Heredity 32:335–348.

    Article  Google Scholar 

  • Gibson, D.J. and Risser, P.G. (1982) Evidence for the absence of ecotypic development in Andropogon virginicus L. on metalliferous mine wastes. New Phytol. 92:589–599.

    Article  Google Scholar 

  • Gregory, R.P.G. and Bradshaw, A.D. (1965) Heavy metal tolerance in populations of Agrostistenuis Sibth. and other grasses. New Phytol. 64:131–143.

    Google Scholar 

  • Grill. E., Winnacker, E.-L. and Zenk, M.H. (1987) Phytochelatins, a class of heavy metal-binding peptides from plants, are functionally analogous to metallothioneins. PNAS 84:439–443.

    Article  PubMed  CAS  Google Scholar 

  • Hamer, D.A. (1986) Metallothionien. Ann. Rev. Biochem . 55 : 913–951.

    Google Scholar 

  • Harper, F.A. (1996) The cost of copper tolerance in Mimulus guttatus. Ph.D. dissertation, University of Exeter.

    Google Scholar 

  • Harper, F.A., Smith, S.E. and Macnair, M.R. (1997).Where is the cost in copper tolerance in Mimulus guttatus? Testing the trade-off hypothesis. Funct. Ecol.; in press.

    Google Scholar 

  • Hickey, D.A. and McNeilly, T. (1975) Competition between metal tolerant and normal plant populations: A field experiment. Evolution 29:458–464.

    Article  Google Scholar 

  • Howden, R., Goldsburgh, PB., Anderson, C.R. and Cobbett, C.S. (1995) Cadmium-sensitive cad-1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 107: 1059–1066.

    Article  PubMed  CAS  Google Scholar 

  • Humphreys, M.O. and Nicholls, M.K. (1984) Relationships between tolerance to heavy metals in Agrostis capillaris (=Agrostis tenius Sibth.) New Phytol. 98:177–190.

    Google Scholar 

  • Ingram, C. (1988) The evolutionary basis of ecological amplitude of plant species. Ph.D. dissertation, Liverpool University.

    Google Scholar 

  • JaffrĂ©, T. (1981) Etude Ă©cologique du peuplement vĂ©gĂ©tal des sols dĂ©rivĂ©s des roches ultrabasiques en Nouvelle CalĂ©donie. Office Rech. Sci. Technol. Outre Mer: Paris.

    Google Scholar 

  • The evolution of inbreeding in plants: Ann Rev. Ecol. Syst. 7:469–495.

    Article  Google Scholar 

  • Kochian, L.V. (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. PlantPhysiol. Plant Mol. Biol. 46:237–260.

    Article  CAS  Google Scholar 

  • Kruckeberg, A.R. (1984) California serpentines: Flora, vegetation, geology, soils and management problems. Univ. Calif. Publ. Bot. 78:1–180.

    Google Scholar 

  • Kruckeberg, A.R. (1986) An essay: The stimulus of unusual geologies for plant speciation. Syst. Bot. 11:455–463.

    Article  Google Scholar 

  • Lefèbvre, C. (1974) Note sur la gĂ©nĂ©tique de la tolerance au zinc chez Armeria maritima. Bull. Soc. Roy. Bot. Belg. 107:217–222.

    Google Scholar 

  • Loeffler, S., Hochberger, A., Grill, E., Winnacker, E.-L. and Zenk, M.H. (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett. 258:42–46.

    Article  CAS  Google Scholar 

  • Macnair, M.R. (1983) The genetic control of copper tolerance in the yellow monkey flower Mimulus guttatus. Heredity 50:283–359.

    Article  CAS  Google Scholar 

  • Macnair, M.R. (1989a) A new species of Mimulus endemic to copper mines in California. Bot. J. Linn. Soc. 100:1–14.

    Article  Google Scholar 

  • Macnair, M.R. (1989b) The potential for rapid speciation in plants. Genome 31:203–210.

    Article  Google Scholar 

  • Macnair, M.R. (1991) Why the evolution of resistance to anthropogenic toxins normally involves major gene changes: The limits to natural selection. Genetica 84:213–219.

    Article  Google Scholar 

  • Macnair, M.R. (1993) Tansley Review No. 49: The genetics of metal tolerance in vascular plants. New Phytol. 124: 541–559.

    Article  CAS  Google Scholar 

  • Macnair, M.R. and Baker, A.J.M. (1994) Metal tolerance in plants: Evolutionary Aspects. In :M.E. Farago (ed.): Plants and the Chemical Elements. VCH, Weinheim, pp. 68–86.

    Google Scholar 

  • Macnair, M.R. and Christie, R (1983) Reproductive isolation as a pleiotropic effect of copper tolerance in Mimulus guttatus? Heredity 50:295–302.

    Article  CAS  Google Scholar 

  • Macnair, M.R. and Gardner, M. (1997) The evolution of edaphic endemics. In. D.J. Howard and S.H. Berlocher (eds): Endless Forms: Species and Speciation; in press.

    Google Scholar 

  • Macnair, M.R. and Watkins, A.D. (1983) The fitness of the copper tolerance gene in Mimulus guttatus in uncontaminated soil. New Phytol. 95:133–137.

    Article  Google Scholar 

  • Macnair, M.R., Macnair, V.E. and Martin, B.E. (1989) Adaptive speciation in Mimulus: An ecological comparison of M. cupriphilus with its presumed progenitor M guttatus. New Phytol. 112:268–279.

    Google Scholar 

  • Macnair, M.R., Cumbes, Q.J. and Smith, S. (1993) The heritability and distribution of variation in degree of copper tolerance in Mimulus guttatus on a copper mine at Copperopolis, California. Heredity 71 : 445–455.

    Article  CAS  Google Scholar 

  • McNeilly, T. (1968) Evolution in closely adjacent populations. Iii. Agrostis tenuis on a small copper mine. Heredity 23:99–108.

    Article  Google Scholar 

  • McNeilly, T. and Antonovics, J. (1968) Evolution in closely adjacent plant populations. IV. Barriers to gene flow. Heredity 23:205–218.

    Article  Google Scholar 

  • McNaughton, S.J., Folsom, T.C., Lee, T., Park, F., Price, C., Roeder, D., Schmitz, J. and Stockwell, C. (1974) Heavy metal tolerance in Typha latifolia without the evolution of tolerant races. Ecology 55:1163–1165.

    Article  CAS  Google Scholar 

  • Malpas, J. (1991) Serpentine and the geology of serpentinized rocks. In:B.A. Roberts and J. Proctor (eds) The Ecology of Areas with Serpentinized Rocks: A World View. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 7–30.

    Google Scholar 

  • Meharg, A.A. (1994) Integrated tolerance mechanisms: Constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell and Environment17 : 989–993.

    Article  CAS  Google Scholar 

  • Meharg, A.A. and Macnair, M.R. (1990) An altered phosphate uptake system in arsenate tolerant Holcus lanatus L. New Phytol. 116:29–35.

    Article  CAS  Google Scholar 

  • Meharg, A.A. and Macnair, M.R. (1992) Genetic correlation between arsenic tolerance and the rate of uptake of arsenate and phosphate in Holcus lanatus. Heredity 69:336–341.

    Article  CAS  Google Scholar 

  • Meharg, A.A. and Macnair, M.R. (1993) Pre-adaptation of Yorkshire fog Holcus lanatus L.to arsenate tolerance. Evolution 47:313–316.

    Article  Google Scholar 

  • Morishima, H. and Oka, H.I. (1977) The impact of copper pollutionon barnyard grass populations. Jap. J. Genetics 52:357–372.

    Article  CAS  Google Scholar 

  • Murphy, A. and Taiz, L. (1995) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis: Ecotypic variation and copper sensitive mutants. Plant Physiol. 108: 29–38.

    PubMed  CAS  Google Scholar 

  • Naylor, J., Macnair, M.R., Williams, E.N.D. and Poulton, P.R. (1996) A polymorphism for phosphate uptake/arsenate tolerance in Holcus lanatus L.: Is there a correlation with edaphic or environmental factors? Heredity77 : 509–517.

    Article  Google Scholar 

  • Nicholls, M.K. and McNeilly, T. (1985) The performance of Agrostis capillaris L. genotypes, differing in copper tolerance, in ryegrass swards on normal soil. New Phytol. 101: 207–217.

    Article  Google Scholar 

  • Outridge, P.M. and Hutchinson, T.C. (1991) Induction of cadmium tolerance by acclimation transferred between ramets of the clonal fern Salvinia minima Baker. New Phytol. 117: 597–605.

    Article  CAS  Google Scholar 

  • Prat, S. (1934) Die Erblichkeit der Resistenz gegen Kupfer. Berichte der Deutschen Botanischen Gesellschaft 102:65–67.

    Google Scholar 

  • Rauser, W.E. and Curvetto, N.R. (1980) Metallothionein occurs in roots of Agrostis tolerant to excess copper. Nature 287:563–564.

    Article  CAS  Google Scholar 

  • Salt, D.E., Thurman, D.A., Tomsett, A.B. and Sewell, A.K. (1989) Copper phytochelatins of Mimulus guttatus. Proc. R. Soc. Lond. B 236:79–89.

    Article  CAS  Google Scholar 

  • Schat, H. and Kalff, M.M.A. (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol. 99:1475–1480.

    Article  PubMed  CAS  Google Scholar 

  • Schat, H. and ten Bookum, W.M. (1992a) Genetic control of toper tolerance in Silene vulgaris. Heredity 68:219–229.

    Article  CAS  Google Scholar 

  • Schat, H. and ten Bookum, W.M. (1992b) Metal specificity of metal tolerance syndromes in higher plants. In: J. Proctor, A.J.M. Baker, R.D. Reeves (eds): The Ecology of Ultramafic (Serpentine) Soils. Intercept, Andover, pp. 337–352.

    Google Scholar 

  • Schat, H., Kuiper, E., ten Bookum, W.M. and Vooijs, R. (1993) A general model for the genetic control of copper tolerance in Silene vulgaris: Evidence from crosses between plants from different tolerant populations. Heredity 70:142–147.

    Article  CAS  Google Scholar 

  • Stebbins, G.L. (1970) Adaptive radiation in Angiosperms. I. Pollination mechanisms. Ann. Rev. Ecol. Syst. 1:307–326.

    Article  Google Scholar 

  • Strange, J. and Macnair, M.R. (1991) Evidence for a role for the cello membrane in copper tolerance of Mimulus guttatus. New Phytol. 119:383–388.

    Article  CAS  Google Scholar 

  • Symeonidis, L., McNeilly, T. and Bradshaw, A.D. (1985) Differential tolerance of three cultivars of Agrostis capillaris L. to cadmium, copper, lead, nickel and zinc. New Phytol. 101: 309–315.

    Article  CAS  Google Scholar 

  • Tilstone, G.H. (1996) The significance of multiple metal tolerances in Mimulus guttatus Fischer ex DC. Ph.D. dissertation, University of Exeter.

    Google Scholar 

  • Tilstone, G.H. and Macnair, M.R. (1997) Nickel tolerance and copper-nickel co-tolerance in Mimulus guttatus from copper mine and serpentine habitats. Plant and Soil; in press.

    Google Scholar 

  • Tilstone, G.H., Macnair, M.R. and Smith, S.E. (1997) Does copper tolerance give cadmium tolerance in Mimulus guttatus? Heredity; in press.

    Google Scholar 

  • Turner, A.P. and Dickinson, N.M. (1993a) Survival of Acerpseudoplatanus L. (sycamore) seedlings on metalliferous soils. New Phytol. 123: 509–521.

    Article  CAS  Google Scholar 

  • Turner, A.P. and Dickinson, N.M. (1993b) Copper tolerance of Acer pseudoplatanus L. (sycamore) in tissue culture. New Phytol. 123: 523–530.

    Article  CAS  Google Scholar 

  • Walker, P.L. (1990) Genotypic and phenotypic aspects of metal tolerance in Holcus lanatus L. Ph.D. dissertation, University of Sheffield.

    Google Scholar 

  • Walley, K.A. Khan, M.S.I. and Bradshaw, A.D. (1974) The potential for the evolution of heavy metal tolerance in plants. Heredity 32:309–319.

    Article  Google Scholar 

  • Wilkins, D.A. (1978) The measurement of tolerance to edaphic factors by means of rootgrowth. New Phytol. 80: 623 —634.

    Google Scholar 

  • Wilkinson, D.M. and Dickinson, N.M. (1995) Metal resistance in trees: The role of mycorrhizae. Oikos 72:298–300.

    Article  Google Scholar 

  • Wilson, J.B. (1988) The cost of heavy metal tolerance: An example. Evolution 42:408–413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Macnair, M.R. (1997). The evolution of plants in metal-contaminated environments. In: Bijlsma, R., Loeschcke, V. (eds) Environmental Stress, Adaptation and Evolution. Experientia Supplementum, vol 83. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8882-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8882-0_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9813-3

  • Online ISBN: 978-3-0348-8882-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics