Skip to main content

Problems on finite sums decompositions of functions

  • Conference paper
General Inequalities 7

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 123))

  • 616 Accesses

Abstract

Let f: X×Y → ℝ be function and an integer n ≥ 1 where X, Y are arbitrary nonempty sets. Find the best approxmation \( f\left( {x,\,y} \right) \approx \sum\limits_{{i = 1}}^n {{f_i}(x){g_i}(y)} \) with respect to the supremum norm ∥f∥ = sup {∣f∣(x,y)∣: xX and yY}. This is even an open problem for polynomial functions f defined on the Cartesian product of two real intervals. If one changes the norm then the problem seem to be totally open. It will also be interested to study the best approximation problem

$$ f\left({{x_1}, \ldots, {x_k}} \right) \approx \sum\limits_{{{i_1} = 1}}^{{{m_1}}} \cdots \sum\limits_{{{i_k} = 1}}^{{{m_k}}} {{\alpha_{{{i_1} \ldots {i_k}}}}f_{{{i_1}}}^1\left({{x_1}} \right) \cdots f_{{{i_k}}}^k\left({{x_k}} \right)} $$

for functions f in more than two variables, even if the L 2-norm is considered. The corresponding problem of the best L 2-approximation (for functions of two variables only) has been solved in Chapter 7 of the book by Th.M. Rassias and J. Šimša [2] (see also [4]). The problem of finding a necessary and sufficient condition for a function f in several variables to be represented by

$$ f\left({{x_1},{x_2}, \ldots, {x_k}} \right) = \sum\limits_{{i = 1}}^n {{f_{{{i_1}}}}\left( {{x_1}} \right){f_{{{i_2}}}}\left({{x_2}} \right) \cdots {f_{{{i_k}}}}\left({{x_k}} \right)} $$

was proposed in [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. D’Alembert, Recherches sur la combe que forme une corde tendue mise en vibration I-II. Hist. Acad. Berlin (1747), 2114–249.

    Google Scholar 

  2. Th.M. Rassias and J. Šimša J., Finite Sums Decompositions in Mathematical Analysis. John Wiley & Sons, 1995.

    MATH  Google Scholar 

  3. Th.M. Rassias, Problem P286. Aequationes Math. 38 (1989), 11–112.

    Google Scholar 

  4. J. Šimša, The best L 2 -approximation by unite sums of functions with separable variables. Aequationes Math. 43 (1992), 248–263.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this paper

Cite this paper

Rassias, T.M. (1997). Problems on finite sums decompositions of functions. In: Bandle, C., Everitt, W.N., Losonczi, L., Walter, W. (eds) General Inequalities 7. ISNM International Series of Numerical Mathematics, vol 123. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8942-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8942-1_35

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9837-9

  • Online ISBN: 978-3-0348-8942-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics