Skip to main content

Passive Linear Systems and Scattering Theory

  • Conference paper
Dynamical Systems, Control, Coding, Computer Vision

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 25))

Abstract

Passive Linear Time-Invariant Systems (PLTIS’s) theory has been developed in connection with quantum mechanics and mathematical physics (spectral, scattering and other problems), with networks, control and stochastic processes theories (synthesis, stability, prediction and other problems) and there is a considerable literature on these topics (see, for example, the books [25], [28], [12], [42], [35], [21], the papers [23], [16], [17], [11], [40], [22], [7], [8] and references in these books and papers). In the first half of the 20th century the impedance formalism was developed, in which the transfer functions (t.f.’s) of PLTIS’s were the so called resistance or impedances matrices. For Conservative Linear Time-Invariant Systems (CLTIS’s) this development was intimately connected with the Riesz-Herglotz integral representation of positive-real functions with scalar, matrix or operator values. Connected to this representation and to the resolvent and spectral theory of selfadjoint and unitary operators in Hilbert space is Cauer method of synthesis of lossless electrical n-ports, etc. At the second half of this century the scattering and transmission (or chain scattering) formalism was also developed in the PLTIS’s theory.

This research was made possible in part by Grant No.UM1-298 from US CRDF and the Unkrainian Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. M. Adamjan, D. Z. Arov, On unitary couplings of semiunitary operators, Mat. issled., Kishinev 1 (2) (1966), 3–66. (Russian).

    MathSciNet  Google Scholar 

  2. D. Z. Arov, M. A. Kaashoek, D. R. Pik, Minimal and optimal linear discrete time-invariant dissipative scattering systems, Integral Equations Operator Theory, 29 (1997), 127–154.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Z. Arov, M. A. Kaashoek, D. R. Pik, Optimal time-variant systems and factorization of operators, I; Minimal and optimal systems, Integral Equations Operator Theory, 31, No 4 (1998), 389–420.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Z. Arov, M. A. Kaashoek, D. R. Pik, Optimal time-varing systems and factorization of operators, II; factorization of operators, J. Oper. Theory, (to appear).

    Google Scholar 

  5. D. Z. Arov, M. A. Nudelman, Passive linear stationary dynamical scattering systems with continuous time. Integral Equations Operator Theory, 24 (1996), 1–45.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.Z. Arov, M. A. Nudelman, Criterion of unitary similarity of minimalpassive scattering systems with given transfer function, Ukr. Math. J., (to appear).

    Google Scholar 

  7. D.Z. Arov, Passive linear stationary dynamical systems, Sibirsk. Math. Journal, 20 (1979), 211–228.

    MathSciNet  MATH  Google Scholar 

  8. D. Z. Arov, A survey on passive networks and scattering systems which are lossless or have minimal losses. Archive für electronik und übertrgagungstechnik. International Journal of electronics and communications, 49, N 5 /6 (1995), 252–265.

    Google Scholar 

  9. D. Z. Arov, Stable dissipative linear stationary dynamical scattering systems, J. Operator Theory, 2 (1979), 95–126.

    MathSciNet  MATH  Google Scholar 

  10. D. Z. Arov, Optimal and stable passive systems. Dokl. Akad. Nauk SSSR, 247 (1979), 265–268.

    MathSciNet  Google Scholar 

  11. J. A. Ball, N. Cohen, De Branges-Rovnyak operator models and systems theory; a survey. Oper. Theory: Advances and Appl., 50 (1990), 93–136.

    MathSciNet  Google Scholar 

  12. V. Belevich. Classical network theory. San Francisco: Holden Day, 1968.

    Google Scholar 

  13. M. S. Brodsky, Triangular and Jordan representations of linear operators. Moscow: Nauka, 1969.

    Google Scholar 

  14. T. Constantinescu, Schur Parameters, Factorizations and Dilation Problems, Birkhäuser Verlag, Basel, Operator Theory: Adv. and Appl., 82, 1995.

    Google Scholar 

  15. L. de Branges, Some Hilbert spaces of entire functions. Trans. Amer. Math. Soc, 96 (1960), 259–295; 99 (1961), 118–152; 100 (1960), 73–115; 105 (1962), 43–62.

    Google Scholar 

  16. L. de Branges, J. Rovnyak, Square Summable Power Series, Holt, Rinehart and Winston, New York, 1966.

    Google Scholar 

  17. L. de Branges, J. Rovnyak, Appendix on square summable power series, Canonical models in quantum scattering theory, Perturbation Theory and its Applications in Quantum Mechanics, C. H. Wilcox, New York, 1966.

    Google Scholar 

  18. H. Dym, A. Iakob, Positive definite extensions, canonical equations and inverse problems, Operator theory: Advances and Applications, 12 (1984), 141–240.

    Google Scholar 

  19. A. V. Efimov, V. R Potapov, J-expansive matrix-valued functions and their role in the analytic theory of electrical circuits. Uspekhi Mat. Nauk, 28 (1973), 65–130. Russian Math. Surveys 28, No 1 (1973), 69–140.

    Google Scholar 

  20. J. Helton, Systems with infinite-dimensional state space: the Hilbert space approach. Proc. IEEE, 64 (1976), 145–160.

    MathSciNet  Google Scholar 

  21. A. Halany,V. Ionescu, Time-Varying Discrete Linear Systems, Birkhauser Verlag, Operator Theory: Adv. and Appl., 68, 1994.

    Google Scholar 

  22. D. J. Hill, P. J. Moylan, Dissipative dynamical systems: basic input-output and state properties, J. Franklin Inst. 309 (1980), 327–357.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Kailath, Norbert Wiener and the development of mathematical engineering, in: Communications, computation, control and signal processing (eds. Paulraj, V. Roychowdhury, C. D. Schaper ), 1997, 35–64.

    Google Scholar 

  24. M. G. Krein, On a generalization of investigations of Stiltjes, Dokl. Akad. Nauk SSSR 93 (1953), 617–620.

    MathSciNet  Google Scholar 

  25. M. S. Livšic, Operators, oscillations, waves (open systems). Moscow: Nauka, 1966.

    Google Scholar 

  26. P. Lax, R. Phillips, Scattering theory, New York, 1967.

    Google Scholar 

  27. P. Lax, R. Phillips R., Scattering theory for dissipative hyperbolic systems, J. Funct. Anal. 14 (2) (1975), 172–235.

    Article  MathSciNet  Google Scholar 

  28. M. S. Livšic, A. A. Yantsevich, The Theory of Operator Nodes in the Hilbert spaces. Kharkov, 1977.

    Google Scholar 

  29. M. M. Malamud, V. I. Mogilevskii, On extensions of dual pairs of operators, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekhn. Nauki, No 1 (1997), 30–37.

    MathSciNet  Google Scholar 

  30. M. A. Nudelman, Optimal passive systems and semiboundedness of quadratic functionals, (Russian) Sibirsk. Mat. Zh. 33, No 1 (1992),78–86; transl, in Siberian Math. J. 33, No 1 (1992), 62–69.

    Google Scholar 

  31. B. Sz.-Nagy, C. Foias, Analyse harmonique des operateurs de l’espace de Hilbert. Academiai Kiado: Masson et Cie, 1967.

    Google Scholar 

  32. N. K. Nikolskii, V. I. Vasyunin, A unified approach to function models and the transcription problem, in: The Gohberg Aniversary Collection, Operator Theory: Adv. and Appl. 41, 1990, 405–434.

    Google Scholar 

  33. N. Nikolski, V. Vasiunin, Elements of spectral theory in terms of the free function model. Part 1: Basic construction. Laboratorie de Math-ematiques Pures de Bordeaux, E.R.S., 0127 C.N.R.S. Dec. 1996 96 /29, 79 p.

    Google Scholar 

  34. D. R. Pik, Time varying dissipative systems, Doctoral scriptie, Vrije Universiteit, Amsterdam, 1994.

    Google Scholar 

  35. V. M. Popov, Hyperstability of control systems. Editura Academici, Bucuresti and Springer Verlag, Berlin, 1973.

    MATH  Google Scholar 

  36. D. Salamon, Realization theory in Hilbert space, Math. Systems Theory, 21 (1989), 147–164.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Sakhnovich, Spectral functions of canonical system of order 2n, Math. USSR Sbornik, 71 (1992), 355–369.

    Article  MathSciNet  Google Scholar 

  38. L. Sakhnovich, The method of operator identities and problems of analysis, Algebra and Analysis, 5 (1993), 4–80.

    Google Scholar 

  39. Yu. L. Shmuljan, Invariant subspaces of semigroups and the Lax-Phillips scheme, Dep. in VIOTTI, N 8009-1386, Odessa, 1986, 49 p.

    Google Scholar 

  40. J. C. Willems, Dissipative dynamical systems, Part I: General theory, Part II: Linar systems with quadratic supply rates. Archive for Rational Mechanics and Analysis 45 (1972), 321–393.

    Google Scholar 

  41. H. Winkler, The inverse spectral problem for canonical systems, Integral Equations Operator Theory, 22 (1995), 360–374.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. R. Wohlers, Lumped and Distributed Passive Networks, Academic Press, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Arov, D.Z. (1999). Passive Linear Systems and Scattering Theory. In: Picci, G., Gilliam, D.S. (eds) Dynamical Systems, Control, Coding, Computer Vision. Progress in Systems and Control Theory, vol 25. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8970-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8970-4_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9848-5

  • Online ISBN: 978-3-0348-8970-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics