Skip to main content

Regulation of Capillary Formation by Laminin and other Components of the Extracellular Matrix

  • Chapter
Regulation of Angiogenesis

Part of the book series: Experientia Supplementum ((EXS,volume 79))

Summary

The process of angiogenesis (vessel formation) and the resulting stabilization of the mature vessel are complex events that are highly regulated and require signals from both serum and the extracellular matrix. Endothelial cells rest on a specialized thin extracellular matrix known as the basement membrane. Endothelial cells lining normal blood vessels are usually quiescent. When a proper stimulus is present, angiogenesis begins when endothelial cells degrade their basement membrane and invade the surrounding extravascular matrix. Formation of new vessels involves the migration and proliferation of cells. To assist the cells in their migration, the extravascular matrix provides an environment rich in stromal collagen fibers, fibrin, hyaluoronic acid, vitronectin and fibronectin. Once the endothelial cells assemble to form a new vessel, the cells secrete a basement membrane that helps to stabilize and maintain the vessel wall. The basement membrane adheres tightly to cells comprising the vessel wall, provides inductive signals, and plays a important role in the homeostasis of new vessels. We have demonstrated that two major components of the basement membrane, laminin and collagen IV, possess endothelial cell binding sites which regulate vessel stability. In this chapter, we will define the role of these molecules in endothelial cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albelda, S.M. (1992) Differential expression of integrin cell-substratum adhesion receptors on endothelium. In: R.Steiner, RB. Weisz and R. Langer (eds): Angiogenesis: Key principles-Science-Technology-Medicine (EXS 61) Birkhäuser Verlag, Basel, pp 188–192.

    Google Scholar 

  • Bauer, J., Margolis, M., Schreiner, C, Edgell, C.J., Azizkhan, J., Lazarowski, E. and Juliano, R.L. (1992) In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J. Cell Physiol. 153:437–449.

    Article  PubMed  CAS  Google Scholar 

  • Burgeson, R.E., Chiquet, M., Deutzmann, R., Ekblom, R, Engel, J., Kleinman, H., Martin, G.R., Meneguzzi, G., Paulsson, M., Sanes, J., Timpl, R., Tryggvason, K., Yamada, Y. and Yurchenco, P.D. (1994) A new nomenclature for the laminins. Matrix Biology 14:209–211.

    Article  PubMed  CAS  Google Scholar 

  • Davis, G.E. and Camarillo, C.W. (1995) Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Exp. Cell Res. 216:113–123.

    Article  PubMed  CAS  Google Scholar 

  • Deen, S. and Ball, R.Y (1994) Basement membrane and extracellular interstitial matrix components in bladder neoplasia-evidence of angiogenesis. Histopathology 25: 475–481.

    Article  PubMed  CAS  Google Scholar 

  • Diaz, F.L., Gutierrez, R. and Várela, H. (1994) Angiogenesis: an update. Histol. Histopathol. 9:807–843.

    Google Scholar 

  • Enenstein, J., Waleh, N.S. and Kramer, R.H. (1992) Basic FGF and TGF-beta differentially modulate integrin expression of human microvascular endothelial cells. Exp. Cell Res. 203:499–503.

    Article  PubMed  CAS  Google Scholar 

  • Engel, J. (1993) Structure and function of laminin. In: D.H. Rohrbach and R. Timpl (ed): Molecular and cellular aspects of basement membranes. Academic Press, San Diego, pp 147–176.

    Google Scholar 

  • Folkman, J. (1992) Angiogenesis - retrospect and outlook. In: R. Steiner, P.B., Weisz and R. Langer (eds): Angiogenesis: Key principles-Science-Technology-Medicine. Birkhäuser Verlag, Basel, pp 4–13.

    Google Scholar 

  • Folkman, J. and Shing, Y (1992) Angiogenesis. J. Biol. Chem. 267:10931–10934.

    PubMed  CAS  Google Scholar 

  • Garrido, T., Riese, H.H., Aracil, M. and Perez, A.A. (1995) Endothelial cell differentiation into capillary-like structures in response to tumour cell conditioned medium: a modified Chemotaxis chamber assay. Br. J. Cancer 71:770–775.

    Article  PubMed  CAS  Google Scholar 

  • Grant, D.S., Kibbey, M.C., Kinsella, J.L., Cid, M.C, and Kleinman, H.K. (19994) The role of basement membrane in angiogenesis and tumor growth. Pathol. Res. Pract. 190: 854–863.

    Article  Google Scholar 

  • Grant, D.S., Kinsella, J.L., Fridman, R., Auerbach R., Piasecki, B.A., Yamada, Y, Zain, M. and Kleinman, H.K. (1992) Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J. Cell Physiol. 153: 614–625.

    Article  PubMed  CAS  Google Scholar 

  • Grant, D.S., Kinsella, J.L., Kibbey, M.C., Laflamme, S., Burbelo, P.D., Goldstein, A.L. and Kleinman, H.K. (1995) Matrigel induces thymosin B4 gene in differentiating endothelial cells. J. Cell Sci. 108:1–10.

    Google Scholar 

  • Grant, D.S., Kleinman, H.K., Goldberg, I.D., Bhargava, M.M., Nickoloff, B.J., Kinsella, J.L., Polverini, P. and Rosen, E.M. (1993) Scatter factor induces blood vessel formation in vivo. Proc. Natl. Acad. Sci. USA 90:1937–1941.

    Article  PubMed  CAS  Google Scholar 

  • Grant, D.S., Kleinman, H.K. and Martin, G.R. (1990) The role of basement membranes in vas¬cular development. Ann. N. Y. Acad. Sci. 588:61–72.

    Article  PubMed  CAS  Google Scholar 

  • Grant, D.S., Lelkes, P.I., Fukuda, K. and Kleinman, H.K. (1991) Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell Dev. Biol. 27:327–335.

    Article  Google Scholar 

  • Grant, D.S., Tshiro, K.-L, Segui-Real, B., Yamada, Y, Martin, G.R. and Kleinman, H.K. (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58:933–943.

    Article  PubMed  CAS  Google Scholar 

  • Haralabopoulos, G.C., Grant, D.S., Kleinman, H.K., Lelkes, PL, Papaioannou, S.P. and Maragoudakis, M.E. (1994) Inhibitors of basement membrane collagen synthesis prevent endothelial cell alignment in matrigel in vitro and angiogenesis in vivo. Lab. Invest. 71:575–582.

    PubMed  CAS  Google Scholar 

  • Hla, T. and Maciag, T. (1990 a) An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J. Biol. Chem. 265:9308–9313.

    PubMed  CAS  Google Scholar 

  • Hla, T. and Maciag, T. (1990 b) Isolation of immediate-early differentiation mRNAs by enzymatic amplification of subtracted cDNA from human endothelial cells. Biochem. Biophys. Res. Commun. 167:637–643.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D.E. (1992) Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy. Semin. Cancer Biol. 3:57–63.

    PubMed  CAS  Google Scholar 

  • Ingber, D.E. and Folkman, J. (1989) How does extracellular matrix control capillary morphogenesis? Cell 58:803–805.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D.E., Madri, J.A. and Folkman, J. (1987) Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro 23:387–394.

    CAS  Google Scholar 

  • Iwamoto, Y., Robey, FA., Grat, J., Sasaki, M., Kleinman, H.K., Yamada, Y. and Martin, G.R. (1987) YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238:1132–1134.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, E.A., Nachman, R.L., Becker, CG. and Minick, CR. (1973) Culture of human endothelial cells derived from umbilical veins-identification by morphological and immunological criteria. J. Clin. Invest. 52:2745–2756.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, T. (1992) [Relationship between endothelial cells and extracellular matrix: investigation using the model of angiogenesis in vitro]. Nippon Geka Hokan 61:134–149.

    PubMed  CAS  Google Scholar 

  • Kibbey, M.C, Grant, D.S. and Kleinman, H.K. (1992) role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J. Natl. Cancer Inst. 84:1633–1638.

    Article  PubMed  CAS  Google Scholar 

  • Klagsbrun, M. (1991) Regulators of angiogenesis: stimulators, inhibitors, and extracellular matrix. J. Cell Biochem. 47:199–200.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H.K., Graf, J., Iwamoto, Y, Kitten, G.T., Ogle, R.C, Sasaki, M., Yamada, Y, Martin, G.R. and Luckenbill-Edds, L. (1987) Role of basement membrane in cell differentiation. Ann. NY. Acad. Sci. 513:134–145.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H.K., McGarvey, M.L., Liotta, L.A., Gehron-Robbey, R, Tryggvasson, K. and Martin, G.R. (1982) Isolation and characterization of type IV procollagen, laminin and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 24:6188–6193.

    Article  Google Scholar 

  • Kleinman, H.K. and Schnaper, H.W. (1993) Basement membrane matrices in tissue development [comment]. Am. J. Respir. Cell Mol. Biol. 8:238–239.

    PubMed  CAS  Google Scholar 

  • Kleinman, H.K., Weeks, B.S., Schnaper, H.W, Kibbey, M.C, Yamamura, K. and Grant, D.S. (1993) The laminins: a family of basement membrane glycoproteins important in cell differentiation and tumor metastases. Vitam. Horm. 47:161–186.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, R.H., Enenstein, J. and Waleh, N.S. (1993) Integrin structure and ligand specificity in cell-matrix interactions. In: D.H. Rohrbach and R. Timpl (eds): Molecular and cellular aspects of basement membranes. Academic Press, San Diego, pp 2349–287.

    Google Scholar 

  • Kramer, R.H. and Fuh, G.M. (1985) Type IV collagen synthesis by cultured human microvascular endothelial cells and its deposition in the subendothelial basement membrane. Biochemistry 24:7423–1430.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y, Kleinman, H.K., Martin, G.R. and Lawley, T.J. (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107:1589–1598.

    Article  PubMed  CAS  Google Scholar 

  • Liley, H.G. (1992) The contributions of the extracellular matrix to vascular form and function. Semin. Perinatol. 16:155–160.

    PubMed  CAS  Google Scholar 

  • Luscinskas, F.W. and Lawler, J. (1994) Integrins as dynamic regulators of vascular function. FASEB J. 8:929–938.

    PubMed  CAS  Google Scholar 

  • Maciag, T. (1990) Molecular and cellular mechanisms of angiogenesis. Important Adv. Oncol. 85:85–98.

    Google Scholar 

  • Madri, J.A. and Pratt, B.M. (1986) Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34:85–91.

    Article  PubMed  CAS  Google Scholar 

  • Maragoudakis, M.E., Panoutsacopoulou, M. and Sarmonika, M. (1988) Rate of basement membrane biosynthesis as an index to angiogenesis. Tissue Cell 20:531–539.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R., Pepper M.S., Vassalli, J.-D. and Orci, L. (1987) Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J. Cell. Physiol. 132:509–516.

    Article  PubMed  CAS  Google Scholar 

  • Montrucchio, G., Lupia, E., Battaglia, E., Passerini, G., Bussolino, F., Emanuelli, G. and Camussi, G. (1994) Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis. J. Exp. Med. 180:377–382.

    Article  PubMed  CAS  Google Scholar 

  • Nehls, V, Schuchardt, F. and Drenckhahn, D. (1994) The effect of fibroblasts, vascular smooth muscle cells, and pericytes on sprout formation of endothelial cells in a fibrin gel angiogenesis system. Microvasc. Res. 48:349–363.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia, R.F., Bonanno, E. and Smith, M. (1993) Fibronectin promotes the elongation of micro-vessels during angiogenesis in vitro. J. Cell Physiol. 154:654–661.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia, R.F, Bonanno, E., Smith, M. and Yurchenco, R (1994) Modulation of angiogenesis in vitro by laminin-entactin complex. Dev. Biol. 164:197–206.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia, R.F., McCormick, J.F. and Bielunas, J. (1984) The formation of endothelial webs and channels in plasma clot culture. Scan. Elect. Microsc. 2:793–799.

    Google Scholar 

  • Passaniti, A., Taylor, R.M., Pili, R., Guo, Y, Long, P.V., Haney, J.A., Pauly, R.R., Grant, D.S. and Martin, G.R. (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67:519–528.

    PubMed  CAS  Google Scholar 

  • Rohr, S., Toti, F., Brisson, C, Albert, A., Freund, M., Meyer, C. and Cazenave, J.P. (1992) Quantitative image analysis of angiogenesis in rats implanted with a fibrin gel chamber. Nouv. Rev. Fr. Hematol. 34:287–294.

    PubMed  CAS  Google Scholar 

  • Ruiter, D.J., Schlingemann, R.O., Westphal, J.R., Denijn, M., Rietveld, F.J. and De, W.R. (1993) Angiogenesis in wound healing and tumor metastasis. Behring Inst. 92: 258–272.

    CAS  Google Scholar 

  • Sage, E.H. and Vernon, R.B. (1994) Regulation of angiogenesis by extracellular matrix: the growth and the glue. J. Hypertens. Suppl. 12: sl45–152.

    Google Scholar 

  • Schnaper, H.W., Kleinman, H.K. and Grant, D.S. (1993) Role of laminin in endothelial cell recognition and differentiation. Kidney Int. 43:20–25.

    Article  PubMed  CAS  Google Scholar 

  • Scott, P.A. and Harris, A.L. (1994) Current approaches to targeting cancer using antiangiogenesis therapies. Cancer Treat. Rev. 20:393–412.

    Article  PubMed  CAS  Google Scholar 

  • Shima, DT, Sauers, B., Gougos, A. and D’Amore, P.A. (1995) Alterations in gene expression associated with changes in the state of endothelial differentiation. Differentiation 58:217–226.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, T.M., Kibbey, M.C, Zain, M., Fridman, R. and Kleinman, H.K. (1991) Basement membrane and the SIKVAV laminin-derived peptide promote tumor growth and metastases. Cancer Metas. Rev. 10:245–254.

    Article  CAS  Google Scholar 

  • Tashiro, K., Sephel, G.C, Greatorex, D., Sasaki, M., Shirashi, N., Martin, G.R., Kleinman, H.K. and Yamada, Y (1991) The RGD containing site of the mouse laminin A chain is active for cell attachment, spreading, migration and neurite outgrowth. J. Cell Physiol. 146:451–459.

    Article  PubMed  CAS  Google Scholar 

  • Tashiro, K.-I., Sephel, G.C, Weeks, B., Sasaki, M., Martin, G.R., Kleinman, H.K. and Yamada, Y. (1989) A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration and neurite outgrowth. J. Biol. Chem. 264:16174–16182.

    PubMed  CAS  Google Scholar 

  • Taylor, CM., Thompson, J.M. and Weiss, J.B. (1991) Matrix integrity and the control of angiogenesis. Int. J. Radiat. Biol. 60:61–64.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, H.L., Burbelo, P.D., Yamada, Y, Kleinman, H.K. and Metcalfe, D.D. (1991) Identification of an amino acid sequence in the laminin A chain mediating mast cell attachment and spreading. Immunology 72:144–149.

    PubMed  CAS  Google Scholar 

  • Thorgeirsson, UP, Lindsay, CK., Cottam, D.W. and Gomez, D.E. (1993) Tumor invasion, proteolysis, and angiogenesis. J. Neurooncol. 18:89–103.

    Article  Google Scholar 

  • Vlodavsky, I., Fuks, Z., Ishai, M.R., Bashkin, P., Levy, E., Korner, G., Bar, S.R. and Klagsbrun, M. (1991) Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. J. Cell Biochem. 45:167–176.

    Article  PubMed  CAS  Google Scholar 

  • Vukicevic, S., Kleinman, H.K., Luyten, F.P., Roberts, A.B., Roche, N.S. and Reddi, A.H. (1992) Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, Y and Kleinman, H.K. (1992) Functional domains of cell adhesion molecules. Curr. Opin. Cell Biol 4:819–823.

    Article  PubMed  CAS  Google Scholar 

  • Yurchenco, P.D. and Schittny, J.C. (1990) Molecular architecture of basement membranes. FASEB J. 4:1577–1590.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Verlag Basel, Switzerland

About this chapter

Cite this chapter

Grant, D.S., Kleinman, H.K. (1997). Regulation of Capillary Formation by Laminin and other Components of the Extracellular Matrix. In: Goldberg, I.D., Rosen, E.M. (eds) Regulation of Angiogenesis. Experientia Supplementum, vol 79. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9006-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9006-9_13

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9864-5

  • Online ISBN: 978-3-0348-9006-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics