Skip to main content

Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula

  • Conference paper
Algorithms in Algebraic Geometry and Applications

Part of the book series: Progress in Mathematics ((PM,volume 143))

Abstract

In the case of univariate polynomials, the Bezoutian \( {{\left( {P\left( x \right) - P\left( y \right)} \right)} \over {\left( {x - y} \right)}} \) defines a quadratic form of maximal rank whose signature is 1 when the degree is odd and 0 when it is even (*). More generally the expression \( {{\left( {Q\left( y \right)P\left( x \right) - Q\left( x \right)P\left( y \right)} \right)} \over {\left( {x - y} \right)}} \) defines a quadratic form whose signature is the Cauchy index of the rational function Q/P. The Kronecker symbol or global residue is the linear form l associating to f (reduced modulo P) its coefficient of degree d - 1 (where d is the degree of P). When the polynomial P has only simple roots the Kronecker symbol (or global residue) of f is the number \( \sum {{{f\left( p \right)} \mathord{\left/ {\vphantom {{f\left( p \right)} {P'}}} \right.} {P'}}} \left( p \right) \) and the signature of the quadratic form l(Qf 2) is again the Cauchy index of Q/P.

Partially supported by POSSO, Esprit BRA 846

Deutsche Forschungsgemeinschaft

Supported by grant KBN 2/1125/91/01

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. E. Alonso, E. Becker, M.-F. Roy., T. Wörmann Zero’s, multiplicities and idempotents for zero dimensional systems. in this volume.

    Google Scholar 

  2. V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade: Singularities of differentiate maps. Vol.2. Birkhäuser, 1988.

    Google Scholar 

  3. Auzinger-Stetter An elimination theory for the computation of all zeros of a system of multivariate polynomial equations, Numerical Mathematics, Proc. Intern. Conf. Singapore 1988. Int. Ser. Num. 8 (1988), 11–30.

    Google Scholar 

  4. Becker, E. and Wörmann, T.: On the trace formula for quadratic forms, in Contemp. Math. 155 (1994), 271–292.

    Google Scholar 

  5. Becker, T. and Weispfenning, V.: Gröbner bases, a computational approach to commutative algebra, Graduate Texts in Mathematics 141, Springer Verlag 1993.

    Book  MATH  Google Scholar 

  6. Cardinal J.-P.: Dualité et algorithmes itératifs pour la solution des systèmes polynomiaux. Thèse, Université de Rennes I. (1993).

    Google Scholar 

  7. D. Eisenbud, H. I. Levine. An algebraic formula for the degree of a C map germ. Annals of Mathematics, 106 (1977), 19–44.

    MathSciNet  MATH  Google Scholar 

  8. Karpilovsky, G. Symmetric and G-algebras, with applications to group representations, Kluwer Academic Publishers 1990.

    MATH  Google Scholar 

  9. G. M. Khimshiashvili. On the local degree of a smooth map. Soobshch. Akad. Nauk Gruz. SSR, 85(1977), 309–311 (in Russian).

    MATH  Google Scholar 

  10. Kreuzer, M. and Kunz, E.: Traces in strict Frobenius algebras and strict complete intersections, J. reine angew. Math. 381 (1987), 181–204.

    MathSciNet  MATH  Google Scholar 

  11. Kunz, E.: Kähler differentials. Vieweg advanced lecture in Mathematics. Braunschweig, Wiesbaden 1986.

    MATH  Google Scholar 

  12. Kunz, E.: Über den n-dimensionalen Residuensatz, Jahresbericht der Deutschen Mathematiker-Vereinigung 94 (1972), 170–188.

    MathSciNet  Google Scholar 

  13. Mazur, B. and Roberts, L.: Local Euler characteristics, Invent, math. 9 (1970), 201–234.

    Article  MathSciNet  MATH  Google Scholar 

  14. Pedersen, P., Roy, M.-F. and Szpirglas, A.: Counting real zeros in the multivariate case, in Computational Algebraic Geometry, Eysette, F. and Galligo, A. (editors), 202–223, Birkhäuser Verlag 1993.

    Google Scholar 

  15. Scheja, G. and Storch, U.: Über Spurfunktionen bei vollständigen Durchschnitten, J. reine angew. Math. 278/279 (1975), 174–190.

    MathSciNet  Google Scholar 

  16. Scheja, G. and Storch, U.: Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte, manuscripta math. 19 (1976), 75–104.

    MathSciNet  MATH  Google Scholar 

  17. Scheja, G. and Storch, U.: Residuen bei vollständigen Durchschnitten, Math. Nachr. 91 (1979), 157–170.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Becker, E., Cardinal, J.P., Roy, MF., Szafraniec, Z. (1996). Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula. In: González-Vega, L., Recio, T. (eds) Algorithms in Algebraic Geometry and Applications. Progress in Mathematics, vol 143. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9104-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9104-2_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9908-6

  • Online ISBN: 978-3-0348-9104-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics