Skip to main content

The role of muscarinic acetylcholine receptors in ocular dominance plasticity

  • Chapter
Central Cholinergic Synaptic Transmission

Part of the book series: Experientia Supplementum ((EXS,volume 57))

Summary

During a critical period of postnatal development neuronal connections in the visual cortex are susceptible to experience-dependent modifications. In normally reared kittens the majority of neurons respond to visual stimulation of either eye. A few days of monocular deprivation, however, are sufficient to render most cortical neurons unresponsive to visual stimuli presented to the deprived eye. Among other factors the cholinergic projection to striate cortex has been identified as having a permissive role in this use-dependent modification of synaptic transmission. In order to analyze further the influence of acetylcholine in cortical plasticity, we tested whether the blockade of muscarinic or nicotinic receptors interfered with ocular dominance plasticity. At four weeks of age kittens had one eyelid sutured closed and osmotic minipumps implanted, which delivered scopolamine (1 nmol/h) or hexamethonium (1 or 10 nmol/h) into the striate cortex of one hemisphere and vehicle solution (saline) into the other. After one week, ocular dominance distributions were determined in area 17 with single unit recording. In the control hemispheres, most neurons became unresponsive to the deprived eye, while in the scopolamine-treated hemispheres most neurons remained binocular. In contrast to the effects of scopolamine, the intracortical infusion of hexamethonium had no effect on ocular dominance plasticity. These results demonstrate that blockade of muscarinic, but not nicotinic receptors renders kitten striate cortex resistent to the effects of monocular deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrien, J., Blanc, G., Buisseret, P., Fregnac, Y., Gary-Bobo, E., Imbert, M., Tassin, J. P., and Trotter, Y. (1985) Noradrenaline and functional plasticity in kitten visual cortex: A re-examination. J. Physiol. 367: 73–98.

    Google Scholar 

  • Bear, M. F., and Daniels, J. D. (1983) The plastic response to monocular deprivation persists in kitten visual cortex after chronic depletion of norepinephrine. J. Neurosci. 3: 407–416.

    Google Scholar 

  • Bear, M. F., Paradiso, M. A., Schwartz, M., Nelson, S. B., Carnes, K. M., and Daniels, J. D. (1983) Two methods of catecholamine depletion in kitten visual cortex yield different effects on plasticity. Nature 302: 245–247.

    Article  Google Scholar 

  • Bear, M. F., and Singer, W. (1986) Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature 320: 172–176.

    Article  Google Scholar 

  • Daw, N. W., Robertson, T. W., Rader, R. K., Videen, T. O., and Coscia, C. J. (1984) Substantial reduction of cortical noradrenaline by lesions of adrenergic pathway does not prevent effects of monocular deprivation. J. Neurosci. 4: 1354–1360.

    Google Scholar 

  • Daw, N. W., Videen, T. O., Rader, R. K., Robertson, T. W., and Coscia, C. J. (1985) Substantial reduction of noradrenaline in kitten visual cortex by intraventricular injections of 6-hydroxydopamine does not always prevent ocular dominance shifts after monocular deprivation. Exp. Brain Res. 59: 30–35.

    Article  Google Scholar 

  • Halliwell, J. V., and Adams, P. R. (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res. 250: 71–92.

    Article  Google Scholar 

  • Harik, S. I., Duckrow, R. B., LaManna, J. C., Rosenthal, M., Sharma, V. K., and Banerjee, S. P. (1981) Cerebral compensation for chronic noradrenergic denervation induced by locus ceruleus lesion: Recovery of receptor binding, isoproterenol-induced adenylate cyclase activity, and oxidative metabolism. J. Neurosci. 1: 641–649.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. (1963) Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26: 994–1002.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206: 419–436.

    Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D. (1976) Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens. Science 194: 206–209.

    Article  Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D. (1979) Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine. J. comp. Neurol. 185: 139–162.

    Article  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M. (1979) Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J. comp. Neurol. 185: 163–182.

    Article  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M. (1981) Cortical recovery from effects of monocular deprivation: Acceleration with norepinephrine and suppression with 6-hydroxydopamine. J. Neurophysiol. 45: 254–266.

    Google Scholar 

  • Kasamatsu, T., and Shirokawa, T. (1985) Involvement of β-adrenoreceptors in the shift of ocular dominance after monocular deprivation. Exp. Brain Res. 59: 507–514.

    Article  Google Scholar 

  • Kleinschmidt, A., Bear, M. F., and Singer, W. (1987) Blockade of ‘NMDA’ receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238: 355–358.

    Article  Google Scholar 

  • Madison, D. V., and Nicoll, R. A. (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299: 636–638.

    Article  Google Scholar 

  • Pettigrew, J. D., and Kasamatsu, T. (1978) Local perfusion of noradrenaline maintains visualcortical plasticity. Nature 271: 761–763.

    Article  Google Scholar 

  • Prusky, G. T., Shaw, C., and Cynader, M. S. (1988) The distribution and ontogenesis of [3H] nicotine binding sites in cat visual cortex. Dev. Brain Res. 39: 161–176.

    Article  Google Scholar 

  • Sato, H., Hata, Y., Hagihara, K., and Tsumoto, T. (1987) Effects of cholinergic depletion on neuron activities in the cat visual cortex. J. Neurophysiol. 58: 781–794.

    Google Scholar 

  • Shirokawa, T., and Kasamatsu, T. (1986) Concentration-dependent suppression by β-adrenergic antagonists of the shift in ocular dominance following monocular deprivation in kitten visual cortex. Neuroscience 18: 1035–1046.

    Article  Google Scholar 

  • Sillito, A. M. (1983) Plasticity in the visual cortex. Nature 303: 477–478.

    Article  Google Scholar 

  • Sporn, J. R., Harden, T. K., Wolfe, B. B., and Molinoff, P. B. (1976) β-adrenergic receptor involvement in 6-hydroxydopamine-induced supersensitivity in rat celebral cortex. 194: 624–626.

    Article  Google Scholar 

  • Trombley, P., Allen, E. E., Soyke, J., Blaha, C. D., Lane, R. F., and Gordon, B. (1986) Doses of 6-hydroxydopamine sufficient to deplete norepinephrine are not sufficient to decrease plasticity in the visual cortex. J. Neurosci. 6: 266–273.

    Google Scholar 

  • U’Prichard, D. C., Reisine, T. D., Mason, S. T., Fibiger, H. C., and Yamamura, H. I. (1980) Modulation of rat brain α- and β-adrenergic receptor populations by lesion fo the dorsal noradrenergic bundle. Brain Res. 187: 143–154.

    Article  Google Scholar 

  • Westlind, A., Grynfarb, M., Hedlund, B., Bartfai, T., and Fuxe, K. (1981) Muscarinic supersensitivity induced by septal lesion or chronic atropine treatment. Brain Res. 225: 131–141.

    Article  Google Scholar 

  • Wiesel, T. N., and Hubel, D. H. (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26: 1003–1017.

    Google Scholar 

  • Wiesel, T. N., and Hubel, D. H. (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28: 1029–1040.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Verlag

About this chapter

Cite this chapter

Gu, Q., Singer, W. (1989). The role of muscarinic acetylcholine receptors in ocular dominance plasticity. In: Frotscher, M., Misgeld, U. (eds) Central Cholinergic Synaptic Transmission. Experientia Supplementum, vol 57. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9138-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9138-7_30

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9922-2

  • Online ISBN: 978-3-0348-9138-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics