Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 72))

Summary

Studies of identified neurones at a distinct place within a species are required to understand how far variability or plasticity exert an influence on an individual structure. Primarily, such a study is independent of whether different profiles are attributed to genetic or epigenetic programs. Finally, the basic structure of the element in question should be constructed. This crucial structure, then, can be used for several approaches, which are based on the concept of the identified neurone: (1) Ontogenetical studies: addressing the question of when during ontogeny is this neurone present in its final (adult) form? (2) Homonomy (“serial homology”): addressing the question as to how far this element is reiterated along a segmented body. And, how far will the same genetic program be modified depending on the function of different segments? (3) Homology (in its classical sense): addressing the question, how far can a specific element be characterized in different species, thereby considering the different systematic levels of the animal kingdom? Is there a basic “Bauplan” of the nervous system that is valid for the various groups of Insecta, Tracheata, Mandibulata, Arthropoda?

We will demonstrate that the structure of identified motoneurones can be employed to answer several of the questions raised above. In several instances, the profiles of motoneurones can be used to identify apparently homonomous (serial homologous) or homologous muscles. For Insecta, many similarities are present probably reflecting features of the basic nervous “Bauplan” of a primitive ancestor. Although there are still several similarities with Insecta apparent, conformance becomes less with Chilopoda, and is even more reduced in Crustacea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ax, P. (1989) Homologie in der Biologie — ein RelationsbegrifF im Vergleich von Arten. Zool. Beitr. N.F. 32: 487–496.

    Google Scholar 

  • Barlet, J. (1953) Morphologie du thorax de Lepisma saccharina L. (Aptérygote Thysanoure). II. Musculature 1. Bull. Ann. Soc. Entom. Belg. 89: 214–236.

    Google Scholar 

  • Barlet, J. (1954) Morphologie du thorax de Lepisma saccharina L. (Aptérygote Thysanoure). II. Musculature 2. Bull. Ann. Soc. Entom. Belg. 90: 299–321.

    Google Scholar 

  • Barnes, R.D. (1980) Invertebrate Zoology. Saunders, Philadelphia.

    Google Scholar 

  • Bernays, E.A. (1972) The muscles of newly hatched Schistocerca gregaria larvae and their possible functions in hatching, digging and ecdysial movements (Insecta: Acrididae). J. Zool. 166: 141–158.

    Article  Google Scholar 

  • Birket-Smith, S.J.R. (1974) On the abdominal morphology of Thysanura (Archaeognatha and Thysanura s. sir.). Entom. Scand., Suppl. 6: 1–67.

    Google Scholar 

  • Breidbach O. and Kutsch W. (1990) Structural homology of identified motoneurones in larval and adult stages of hemi-and holometabolous insects. J. Comp. Neurol. 297: 392–409.

    Article  PubMed  CAS  Google Scholar 

  • Bronn, H. (1858) Morphologische Studien über die Gestaltungsgesetze der Naturkörper überhaupt und der organischen insbesondere. C.F. Winter’sche Verlagshandlung, Leipzig, Heidelberg.

    Google Scholar 

  • Darwin, C. (1859) The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Murray, London.

    Google Scholar 

  • Davis, N.T. (1977) Motor neurons of the indirect flight muscles of Dysdercus fulvoniger. Ann. Entom. Soc. Am. 70: 377–386.

    Google Scholar 

  • Davis, N.T. (1983) Serial homologies of the motor neurons of the dorsal intersegmental muscles of the cockroach, Periplaneta americana (L.). J. Morph. 176: 197–210.

    Article  Google Scholar 

  • Dobzhansky, T., Ayala, F., Stebbins, G.L. and Valentine, J.W. (1977) Evolution. Freeman, San Francisco.

    Google Scholar 

  • Dumont, J.P.C. and Robertson, R.M. (1986) Neuronal circuits: an evolutionary perspective. Science 233: 849–853.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, L.I. and Frieden, E. (1981) Metamorphosis — A Problem in Developmental Biology. Plenum Press, New York.

    Google Scholar 

  • Goodman, C.S., Pearson, K.G. and Heitier, W.J. (1979) Variability of identified neurons in grasshoppers. Comp. Biochem. Physiol. 64 A: 455–462.

    Article  Google Scholar 

  • Gupta, A.P. (1979) Arthropod Phylogeny. v. Nostrand Reinhold, New York.

    Google Scholar 

  • Heckmann, R. and Kutsch, W. (1990) Common neural ‘Bauplan’ in Tracheata? Innervation of the dorsal longitudinal muscles. In: N. Eisner and G. Roth (eds): Brain-Perception-Recognition, Thieme Verlag, Stuttgart, p. 39.

    Google Scholar 

  • Hennig, W. (1969) Die Stammesgeschichte der Insekten. Kramer, Frankfurt.

    Google Scholar 

  • Hinton, H.E. (1955) On the structure, function, and distribution of the prolegs of the Panorpoidea with a criticism of the Berlese-Imms theory. Trans. R. Entom. Soc. Lond. 106:455–540.

    Article  Google Scholar 

  • Hoyle, G. (1978) The dorsal, unpaired, median neurons in the locust metathoracic ganglion. J. Neurobiol. 9: 43–57.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, K. and Koenig, J.H. (1988) Morphological identification of the motor neurons innervating the dorsal longitudinal flight muscle of Drosophila melanogaster. J. Comp. Neurol. 273: 436–444.

    Article  CAS  Google Scholar 

  • Kalogianni, E., Consoulas, C. and Theophilidis, G. (1989) Anatomy and innervation of the abdominal segmental muscles in the larval and adult Tenebrio molitor (Coleoptera). J. Morph. 202: 271–279.

    Article  Google Scholar 

  • Kästner, A. (1963) Tracheata. In: Lehrbuch der Speziellen Zoologie, Teil I: Wirbellose. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Kästner, A. (1965) Articulata. In: Lehrbuch der Speziellen Zoologie. Vol. I, Wirbellose. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Kluge, A.G. (1977) Chordate Structure and Function. Second edition, Macmillan, New York, London.

    Google Scholar 

  • Kutsch, W. and Breidbach, O. (1994) Homologous structures in the nervous systems of Arthropoda. Adv. Insect Physiol. 24: 1–113.

    Article  Google Scholar 

  • Kutsch, W. and Kittmann, R. (1991) Flight motor pattern in flying and non-flying Phasmida. J. Comp. Physiol. A 168: 483–490.

    Article  Google Scholar 

  • Kutsch, W. and Schneider, H. (1987) Histological characterization of neurones innervating functionally different muscles of Locusta. J. Comp. Neurol. 261: 515–528.

    Article  CAS  Google Scholar 

  • Lee, W.-Y. (1964) A study of the development of the musculature from the larva to the adult in Tenebrio molitor L. (Tenebrionidae, Coleoptera). Ph.D. thesis, Univ. Minnesota.

    Google Scholar 

  • Leise, E.M. (1990) Modular construction of nervous systems: a basic principle of design for invertebrates and vertebrates. Brain Res. Rev. 15: 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Marquardt, F. (1940) Beiträge zur Anatomie der Muskulatur und der peripheren Nerven von Carausius (Dixippus) mososus. Br. Zool. Jb. Anat. 66: 63–128.

    Google Scholar 

  • Mayr, E. (1969) Principles of Systematic Zoology. McGraw-Hill, New York.

    Google Scholar 

  • Mickoleit, G. (1961) Zur Thoraxmorphologie der Thysanoptera. Zool. Jb. Anat. 79: 1–92.

    Google Scholar 

  • Mittenthal, J.E. and Wine, J.J. (1978) Segmental homology and variation in flexor motoneurons of the crayfish abdomen. J. Comp. Neurol. 177: 311–334.

    Article  PubMed  CAS  Google Scholar 

  • Myers, C.M. and Ball, E. (1987) Comparative development of the extensor and flexor tibiae muscles in the leg of the locust, Locusta migratoria. Development 101: 351–361.

    Google Scholar 

  • Myers, C.M., Whitington, P.M. and Ball, E.E. (1990) Embryonic development of the innervation of the locust extensor tibiae muscle by identified neurons: formation and elimination of inappropriate axon branches. Dev. Biol. 137: 194–206.

    Article  PubMed  CAS  Google Scholar 

  • Neville, A.C. (1963) Motor unit distribution of the dorsal longitudinal flight muscles in locusts. J. Exp. Biol. 40: 123–136.

    Google Scholar 

  • Owen, R. (1843) Lectures on the Comparative Anatomy and Physiology of the Invertebrate Animals. Longman, Brown, Green, Longmans, London.

    Google Scholar 

  • Owen, R. (1848) On the Archetype and Homologies of the Vertebrate Skeleton. J. v. Voorst, London.

    Google Scholar 

  • Pipa, R.L. (1978) Patterns of neuronal reorganization during the postembryonic development of insects. Int. Rev. Cytol., Suppl. 7: 403–438.

    Google Scholar 

  • Remane, A. (1956) Die Grundlagen des natürlichen Systems der vergleichenden Anatomie und der Phylogenetik. Akademische Verlagsgesellschaft, Geest and Portig, Leipzig.

    Google Scholar 

  • Rilling, G. (1960) Zur Anatomie des braunen Steinläufers Lithobius forficatus L. (Chilopoda). Skelettmuskelsystem, peripheres Nervensystem und Sinnesorgane des Rumpfes. Zool. Jb. Anat. 78: 39–128.

    Google Scholar 

  • Rilling, G. (1968) Lithobius forficatus. Grosses Zool. Prakt. 13b. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Ross, H.H. (1965) A Textbook of Entomology, Third edition, Wiley, New York.

    Google Scholar 

  • Satterlie, R.A. (1985) Structural variability of an identified interneurone in locusts from a wild population. J. Exp. Biol. 114: 691–695.

    Google Scholar 

  • Sehnal F. (1985) Morphology of insect development. Ann. Rev. Entomol. 30: 89–109.

    Article  Google Scholar 

  • Sharov, A.G. (1966) Basic Arthropodan Stock with Special Reference to Insecta. Pergamon Press, Oxford.

    Google Scholar 

  • Simmons, P. (1977) The neuronal control of dragonfly flight. I. Anatomy. J. Exp. Biol. 71: 123–140.

    PubMed  CAS  Google Scholar 

  • Simpson, G.G. (1967) Principles of Animal Taxonomy. Columbia Univ. Press, New York.

    Google Scholar 

  • Snodgrass, R.E. (1929) The thoracic mechanism of a grasshopper, and its antecedents. Smithson. Misc. Coll. 82: 1–112.

    Google Scholar 

  • Snodgrass, R.E. (1935) The abdominal mechanisms of a grasshopper. Smithson. Misc. Coll. 94: 1–89.

    Google Scholar 

  • Steffens, G.R. and Kutsch, W. (1992) Embryonic development of identified motor neurones in the locust. In: N. Eisner and D.W. Richter (eds): Rhythmogenesis in Neurons and Networks, Thieme Verlag, Stuttgart, p. 630.

    Google Scholar 

  • Taylor, H.M. and Truman, J.W. (1974) Metamorphosis of the abdominal ganglia of the tobacco hornworm, Manduca sexta. J. Comp. Physiol. 90: 367–388.

    Article  Google Scholar 

  • Tsujimura, H. (1988) Metamorphosis of wing motor system in the silk moth, Bombyx mori L. (Lepidoptera: Bombycidae): anatomy of the sensory and motor neurons that innervate larval mesothoracic dorsal musculature, stretch receptors, and epidermis. Int. J. Insect Morph. Embryol. 17: 367–380.

    Article  Google Scholar 

  • Tsujimura, H. (1989) Metamorphosis of wing motor system in the silk moth, Bombyxmori: origin of wing motor neurons. Dev. Growth Differ. 31: 331–339.

    Article  Google Scholar 

  • Urbach, R., Breidbach, O. and Kutsch, W. (1994) Comparative anatomy of muscle sets in larval and adult stages of Zophobas morio (Coleoptera, Tenebrionidae). Zoomorph. 114: 47–57.

    Article  Google Scholar 

  • Voss, F. (1905) Über den Thorax von Gryllus domesticus, Mit besonderer Berücksichtigung des Flügelgelenks und dessen Bewegung. II. Die Muskulatur. Z. wiss. Zool. 78: 355–521.

    Google Scholar 

  • Wagner, G.P. (1989) The biological homology concept. Annu. Rev. Ecol. Syst. 20: 51–69.

    Article  Google Scholar 

  • Weeks, J.C. and Ernst-Utzschneider, K. (1989) Respecification of larval proleg motoneurons during metamorphosis of the tobacco hornworm, Manduca sexta: segmental dependence and hormonal regulation. J. Neurobiol. 20: 569–592.

    Article  PubMed  CAS  Google Scholar 

  • Whitington, P.M. and Seifert, E. (1981) Identified neurons in an insect embryo: the pattern of neurons innervating the metathoracic leg of the locust. J. Comp. Neurol. 200: 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Wiens, T.J. and Wolf, H. (1993) The inhibitory motoneurons of crayfish thoracic limbs: identification, structures, and homology with insect common inhibitors. J. Comp. Neurol. 336: 261–278.

    Article  PubMed  CAS  Google Scholar 

  • Wiesend P. (1957) Die postembryonale Entwicklung der Thoraxmuskulatur bei einigen Heuschrecken mit besonderer Berücksichtigung der Flugmuskeln. Z. Morph. Ökol. Tiere 46: 529–570.

    Article  Google Scholar 

  • Wilson, J.A. (1979) The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy. J. Neurobiol. 10: 41–65.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. A. and Hoyle, G. (1978) Serially homologous neurones as concomitants of functional specialisation. Nature 274: 377–378.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J.A., Phillips, C.E., Adams, M.E. and Huber, F. (1982) Structural comparison of a homologous neuron in gryllid and acridid insects. J. Comp. Neurol. 13: 459–467.

    CAS  Google Scholar 

  • Wittig, G. (1955) Untersuchungen am Thorax von Perla abdominalis Burm. (Larve und Imago). Zool. Jb. Anat. 74: 491–570.

    Google Scholar 

  • Xie, F., Meier, T. and Reichert, H. (1992) Embryonic development of muscle patterns in the body wall of the grasshopper. W. Roux’s Arch. Dev. Biol. 201: 301–311.

    Article  Google Scholar 

  • Yack, I.E. and Fullard, J.H. (1990) The mechanoreceptive origin of insect tympanal organs: a comparative study of similar nerves in tympanate and atympanate moths. J. Comp. Neurol. 300: 523–534.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Kutsch, W., Heckmann, R. (1995). Homologous structures, exemplified by motoneurones of Mandibulata. In: Breidbach, O., Kutsch, W. (eds) The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Experientia Supplementum, vol 72. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9219-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9219-3_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9949-9

  • Online ISBN: 978-3-0348-9219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics