Skip to main content

Inversion of Partially Specified Positive Definite Matrices by Inverse Scattering

  • Chapter
The Gohberg Anniversary Collection

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 40))

Abstract

Inverse scattering techniques such as the Wiener-Hopf factorization and the Schur algorithm can be used to determine an approximate inverse of a partially specified positive definite matrix. In this paper we explore the connection between inverse scattering and matrix extension theory from a mathematical and algorithmic point of view. We present fast algorithms for computing either the exact inverse of the maximum entropy extension of a partially specified positive definite matrix or a close approximation to it, depending on the structure of the set on which the matrix is specified. We aim at presenting a unification of various results which have appeared in the literature and present some new results as well.

This work was supported in part by the Dutch National Applied Science Foundation under grant FOM DEL 77.1260.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Dym and I. Gohberg, Extensions of band matrices with band inverses, Linear Algebra Appl., 36:1–24, 1981.

    Article  Google Scholar 

  2. J.P. Burg, Maximum-Entropy Spectral Analysis, PhD thesis, Department of Geophysics, Stanford University, Stanford, California, 1975.

    Google Scholar 

  3. R. Grone, C.R. Johnson, E. M. Sá, and H. Wolkowicz, Positive definite completions of partial Hermitian matrices, Linear Algebra Appl., 58:109–124, 1984.

    Article  Google Scholar 

  4. H. Dym and I. Gohberg, On an extension problem, generalized fourier analysis, and an entropy formula, Integral Equations and Operator Theory, 3/2:144–215, 1980.

    Article  Google Scholar 

  5. H.J. Woerdeman, Strictly contractive and positive completions for block matrices, Technical Report WS 337, Vrije Universiteit Amsterdam, November 1987.

    Google Scholar 

  6. S.W. Lang and J.H. McClellan, Multidimensional MEM spectral estimation, IEEE Transactions on Acoustics, Speech, and Signal Processing, 30, 1982.

    Google Scholar 

  7. Z.-Q Ning, P.M. Dewilde, and F.L. Neerhoff, Capacitance coefficients for VLSI multilevel metallization lines, IEEE Transactions on Electron Devices, 34, 1987.

    Google Scholar 

  8. Ph. Delsarte, Y. Genin, and Y. Kamp, A method of matrix inverse triangular decomposition, based on contiguous principal submatrices, Linear Algebra Appl., 31, 1980.

    Google Scholar 

  9. N. Levinson, The Wiener rms (root mean square) error criterion in filter design and prediction, Journal on Mathematical Physics, 25:261–278, 1947.

    Google Scholar 

  10. P. Dewilde, A. Vieira, and T. Kailath, On a generalized Szegö-Levinson realization algorithm for optimal linear prediction based on a network synthesis approach, IEEE Transactions on Circuits and Systems, 25, 1978.

    Google Scholar 

  11. I. Schur, Ăśber Potentzreihen die im Innnern des Einheitskreises beschrankt sind, Journal fĂĽr die Reine und Angewandte Mathematik, 147, 1917.

    Google Scholar 

  12. E.F. Deprettere, Mixed-form time-variant lattice recursions, Outils et Modèles Mathematiques pour l’Automatique, l’Analyse des Systèmes, et le Traitement du Signal, 1981.

    Google Scholar 

  13. H. Lev-Ari and T. Kailath, Schur and Levinson algorithms for nonstationary processes, In Proceedings International Conference on Acoustics, Speech, and Signal Processing, 1981.

    Google Scholar 

  14. M. Morf and J.-M. Delosme, Matrix decompositions and inversions via elementary signature-orthogonal transformations, In Proceedings International Symposium on Mini-and Micro computers in Control and Measurement, 1981.

    Google Scholar 

  15. P. Dewilde and E.F. Deprettere, Approximate inversion of positive matrices with applications to modelling, pages 211–238, Springer-Verlag, 1987.

    Google Scholar 

  16. J. Lim and N. Malik, A new algorithm for two-dimensional maximum entropy power spectrum estimation, IEEE Transactions on Acoustics, Speech, and Signal Processing, 29, 1981.

    Google Scholar 

  17. N. Rozario and A. Papoulis, Spectral estimation from nonconsecutive data, IEEE Transactions on Information Theory, 33, 1987.

    Google Scholar 

  18. P. Dewilde and E.F. Deprettere, The generalized Schur algorithm: approximation and hierarchy, Operator Theory: Advances and Applications, 29, 1988.

    Google Scholar 

  19. M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford University Press, 1985.

    Google Scholar 

  20. H. Dym and I. Gohberg, A new class of contractive interpolants and maximum entropy principles, Operator Theory: Advances and Applications, 29, 1988.

    Google Scholar 

  21. J. Volder, The Cordic trigonometric computing technique, IRE Transactions on EC, 8, 1959.

    Google Scholar 

  22. J. Walter, A unified algorithm for elementary functions, In Proceedings Spring Joint Computer Conference, 1971.

    Google Scholar 

  23. J. de Lange, A. van der Hoeven, E.F. Deprettere, and J. Bu, An optimal floating-point pipeline CMOS CORDIC processor: algorithm, automated design, layout, and performance, In Proceedings International Symposium on Circuits and Systems, 1988.

    Google Scholar 

  24. H. Nelis, E.F. Deprettere, and P. Dewilde, Maximum-entropy and minimum-norm matrix extensions, Technical Report NEL 88, Department of Electrical Engineering, Delft University of Technology, December 1988.

    Google Scholar 

  25. G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley Publishing Company, Inc., 1973.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to I. Gohberg on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Nelis, H., Dewilde, P., Deprettere, E. (1989). Inversion of Partially Specified Positive Definite Matrices by Inverse Scattering. In: Dym, H., Goldberg, S., Kaashoek, M.A., Lancaster, P. (eds) The Gohberg Anniversary Collection. Operator Theory: Advances and Applications, vol 40. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9276-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9276-6_13

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9974-1

  • Online ISBN: 978-3-0348-9276-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics