Skip to main content

Features of the plant Golgi apparatus

  • Chapter
The Golgi Apparatus

Abstract

The plant Golgi apparatus (GA) as its counterparts in mammalian, insect and fungal cells is a multifunctional organelle not only receiving and modifying cargo delivered from the endoplasmic reticulum (ER) for export, but also synthesising lipids and many of the complex polysaccharides of the cell wall (Neumann et al. 2003). It is also likely that the organelle acts as one of several destinations for endocytosed material (Fowke et al. 1991). The GA in a plant cell is composed of numerous, sometimes many hundreds, individual stacks of cisternae being approximately 1 mm in diameter (Fig. 1). These superficially resemble the stacks reported within insect cells such as Drosophila (Kondylis et al. 2005), with the major difference in that in elongate or mature cells individual stacks demonstrate an actin-based motility, showing a range of movements associated with the surface of ER tubules (Boevink et al. 1998). In this chapter we will concentrate on some of the features that make the plant Golgi unique, such as the motility, the interface with the ER and mechanisms of transport within and from the stack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan VJ, Thompson HM, McNiven MA (2002) Motoring around the Golgi. Nat Cell Biol 4: E236–E242

    Article  PubMed  CAS  Google Scholar 

  • Altan-Bonnet N, Sougrat R, Liu W, Snapp EL, Ward T, Lippincott-Schwartz J (2006) Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities. Mol Biol Cell 17: 990–1005

    Article  PubMed  CAS  Google Scholar 

  • Avisar D, Prokhnevsky AJ, Makarova KS, Koonin EV, Dolja W (2008) Myosin XI-K is required for rapid trafficking of Golgi stacks, peroxisomes and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol DOI: 10.1104/pp.107.113647

    Google Scholar 

  • Balch WE, Glick BS, Rothman JE (1984) Sequential intermediates in the pathway of intercompartmental transport in a cell-free system. Cell 39: 525–536

    Article  PubMed  CAS  Google Scholar 

  • Becker B, Bölinger B, Melkonian M (1995) Anterograde transport of algal scales through the Golgi complex is not mediated by vesicles. Trends Cell Biol 5: 305–307

    Article  PubMed  CAS  Google Scholar 

  • Boevink P, Oparka K, Santa-Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on and actin/ER network. Plant J 15:441–447

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116: 153–166

    Article  PubMed  CAS  Google Scholar 

  • Bracker CE, Morré DJ, Grove SN (1996) Structure, differentiation, and multiplication of Golgi apparatus in fungal hyphae. Protoplasma 194: 250–274

    Article  Google Scholar 

  • Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14: 1293–1309

    Article  PubMed  CAS  Google Scholar 

  • Chatre L, Brandizzi F, Hocquellet A, Hawes C, Moreau P (2005) Sec22 and Memb1 1 are v-SNAREs of the anterograde endoplasmic reticulum — Golgi pathway in tobacco leaf epidermal cells. Plant Physiol 139: 1244–1254

    Article  PubMed  CAS  Google Scholar 

  • Cunningham WP, Morré DJ, Mollenhauer HH (1966) Structure of isolated plant Golgi apparatus revealed by negative staining. J Cell Biol 28: 169–179

    Article  PubMed  CAS  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    Article  PubMed  CAS  Google Scholar 

  • Donohoe BS, Kang B-H, Staehelin LA (2007) Identification and characterization of COPIa-and COPIB-type vesicle classes associated with plant and algal Golgi. PNAS 104: 163–168

    Article  PubMed  CAS  Google Scholar 

  • Fowke LC, Tanchak MA, Galway ME (1991) Ultrastructural cytology of the endocytotic pathway in plants. In: Hawes C, Coleman JOD, Evans DE (eds) Endocytosis, exocytosis and vesicle traffic in plants. OUP, Oxford, pp 15–40

    Google Scholar 

  • Hadlington JL, Denecke J (2000) Sorting of soluble proteins in the secretory pathway of plants. Curr Opin Plant Biol 3: 461–468

    Article  PubMed  CAS  Google Scholar 

  • Hanton SL, Chatre L, Renna L, Matheson LA, Brandizzi F (2007a) De novo formation of plant endoplasmic reticulum export sites is membrane cargo induced and signal mediated. Plant Physiol 143: 1640–1650

    Article  PubMed  CAS  Google Scholar 

  • Hanton S, Matheson L, Chatre L, Rossi M, Brandizzi F (2007b) Post-Golgi protein traffic in the plant secretory pathway. Plant Cell Rep 26: 1431–1438

    Article  PubMed  CAS  Google Scholar 

  • Harris N, Oparka K (1983) Connections between dictyosomes, ER and GERL in cotyledons of mung bean (Vigna radiata L). Protoplasma 114: 92–102

    Article  Google Scholar 

  • Hawes C, Faye L, Satiat-Jeunemaitre B (1996) The Golgi apparatus and pathways of vesicle trafficking. In Smallwood M, Know JP, Bowles DJ (eds) Membranes: specialized functions in plants. Bios Scientific Publishers, Oxford, pp 337–365

    Google Scholar 

  • Hawes C, Satiatt-Jeunemaitre B (1996) Stacks of questions: how does the plant Golgi work? Trends Plant Sci 1: 395–401

    Google Scholar 

  • Hawes C, Satiat-Jeunemaitre B (2005) The plant Golgi apparatus: going with the flow. Biochim Biophys Acta 1744: 93–107

    Article  PubMed  CAS  Google Scholar 

  • Hillmer S, Movafeghi A, Robinson DG, Hinz G (2001) Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol 152: 41–50

    Article  PubMed  CAS  Google Scholar 

  • Hinz G, Colanesi S, Hillmer S, Rogers JC, Robinson DG (2007) Localization of vacuolar transport receptors and cargo proteins in the Golgi apparatus of developing Arabidopsis embryos. Traffic 8: 1452–1464

    Article  PubMed  CAS  Google Scholar 

  • Kondylis V, Spoorendonk KM, Rabouille C (2005) dGRASP localisation and function in the early exocytotic pathway in Drosophila S2 Cells. Mol Biol Cell 16: 4061–4072

    Article  PubMed  CAS  Google Scholar 

  • Lam SK, Tse YC, Robinson DG, Jiang L (2007) Tracking down the elusive early endosome. Trends Plant Sci 11: 497–504

    Article  Google Scholar 

  • Langhans M, Hawes C, Hillmer S, Hummel E, Robinson D (2007) Golgi regeneration after Brefeldin A treatment in BY-2 cells entails stack enlargement and cisternal growth followed by division. Plant Physiol 145: 527–538

    Article  PubMed  CAS  Google Scholar 

  • Latijnhouwers M, Hawes C, Carvalho C (2005a) Holding it all together? Candidate proteins for the plant Golgi matrix. Curr Opin Plant Biol 8: 632–639

    Article  PubMed  CAS  Google Scholar 

  • Latijnhouwers M, Hawes C, Carvalho C, Oparka K, Gillingham AK, Boevink P (2005b) An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. Plant J 44: 459–470

    Article  PubMed  CAS  Google Scholar 

  • Latijnhouwers M, Gillespie T, Boevink P, Kriechbaumer V, Hawes C, Carvalho CM (2007) Localization and domain characterization of Arabidopsis golgin candidates. J Exp Bot 58: 4373–4386

    Article  PubMed  CAS  Google Scholar 

  • Letourneur F, Gaynor EC, Hennecke S, Demolliere C, Duden R, Emr SD, Riezman H, Cosson P (1994) Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79: 1199–1207

    Article  PubMed  CAS  Google Scholar 

  • Li J, Nebenführ A (2007) Organelle targeting of myosin XI is mediated by two globular tail domains with separate cargo binding sites. J Biol Chem 282: 20593–20602

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Lee Y-RJ, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823

    Article  PubMed  CAS  Google Scholar 

  • Moreau P, Brandizzi F, Hanton S, Chatre L, Melser S, Hawes C, Satiat-Jeunemaitre B (2006) The plant ER-Golgi interface: a highly structured and dynamic membrane complex. J Exp Bot 58: 49–64

    Article  PubMed  Google Scholar 

  • Nebenfuhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazukiewicz AM, Meehl JB, Staehelin LA (1999) Stop and go movements of plant Golgi stacks are mediated by the acto-mysin system. Plant Physiol 121: 1127–1141

    Article  PubMed  CAS  Google Scholar 

  • Neumann U, Brandizzi F, Hawes C (2003) Protein transport in plant cells: in and out of the Golgi. Ann Bot 92: 167–180

    Article  PubMed  CAS  Google Scholar 

  • Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFPfor selective photolabeling of proteins and cells. Science 297: 1873–1877

    Article  PubMed  CAS  Google Scholar 

  • Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja W (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis thaliana Plant Physiol DOI:10.1104/pp.107.113654

    Google Scholar 

  • Phillipson BA, Pimpl P, daSilva LL, Crofts AJ, Taylor JP, Movafeghi A, Robinson DG, Denecke J (2001) Secretory bulk flow of proteins is efficient and COPII dependent. Plant Cell 13: 2005–2020

    Article  PubMed  CAS  Google Scholar 

  • Puri S, Linstedt AD (2003) Capacity of the Golgi apparatus for biogenesis from the endoplasmic reticulum. Mol Biol Cell 14: 5011–5018

    Article  PubMed  CAS  Google Scholar 

  • Reddy ASN, Day IS (2001) Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biology 2: 1–18

    Article  Google Scholar 

  • Renna L, Hanton SL, Stefano G, Bortolotti L, Misra V, Brandizzi F (2005) Identification and characterisation of AtCasp, a plant transmembrane Golgi matrix protein. Plant Mol Biol 58: 109–122

    Article  PubMed  CAS  Google Scholar 

  • Richter S, Geldner N, Schrader J, Wolters H, Stierhof Y-D, Rios G, Robinson D, Jürgens G (2007) Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature 448: 488–493

    Article  PubMed  CAS  Google Scholar 

  • Robinson DG, Herranz M-C, Bubeck J, Peppercock R, Ritzenthaler C (2007) Membrane dynamics in the early secretory pathway. Crit Revs Plant Sci 26: 199–225

    Article  CAS  Google Scholar 

  • Robinson DG, Oliviusson P, Hinz G (2005) Protein sorting to the storage vacuoles of plants: a critical appraisal. Traffic 6: 615–625

    Article  PubMed  CAS  Google Scholar 

  • Runions J, Brach T, Kuhner T, Hawes C (2006) Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57: 43–50

    Article  PubMed  CAS  Google Scholar 

  • Saint-Jore CM, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29:661–678

    Article  PubMed  CAS  Google Scholar 

  • DaSilva LLP, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F (2004) Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16: 1753–1771

    Article  PubMed  CAS  Google Scholar 

  • Sparkes IA, Teanby NA, Hawes CR (2008) Truncted myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation. J Exp Bot 59: 2499–2512

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, Moore I (1995) The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Ann Rev Plant Physiol Mol Biol 46: 261–288

    CAS  Google Scholar 

  • Stefano G, Renna L, Hanton L, Chatre L, Haas TA, Brandizzi F (2006) ARL1 playsa role in the binding of the GRIP domain of a peripheral matrix protein to the Golgi apparatus in plant cells. Plant Mol Biol 61: 431–449

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Shimada T, Kondo M, Nishimura M, Hara-Nishimura I (2005) KATAMARI 1/ MURUS3 is a novel Golgi membrane protein that is required for endomembrane organisation in Arabidopsis. Plant Cell 17: 1764–1776

    Article  PubMed  CAS  Google Scholar 

  • Tang BL, Wang Y, Ong YW, Hong W (2005) COPII and exit from the endoplasmic reticulum. Biochim Biophys Acta 1744: 293–303

    Article  PubMed  CAS  Google Scholar 

  • Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Glandomenico D, San Pietro E, Beznoussenko GV, Polishchuk E, Baldassarre M, Buccione R, Geerts WJC, Koster AJ, Burger KNJ, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nature Cell Biology 6: 1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sata MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29: 49–65

    Article  PubMed  CAS  Google Scholar 

  • Villarejo A, Burén S, Larsson S, Déjardin A, Monné M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, Von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7: 1224–1231

    Article  PubMed  Google Scholar 

  • Watson P, Stephens DJ (2005) ER-to-Golgi transport: form and formation of vesicular and tubular carriers. Biochim Biophys Acta 1744: 304–315

    Article  PubMed  CAS  Google Scholar 

  • Yang YD, el Amawi R, Bubeck J, Pepperkok R, Ritzenthaler C, Robinson DG (2005) Visualization of COPII and Golgi dynamics in Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with ER exit sites. Plant Cell 17: 1513–1531

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hawes, C., Osterrieder, A., Sparkes, I. (2008). Features of the plant Golgi apparatus. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_35

Download citation

Publish with us

Policies and ethics