Skip to main content
  • 1387 Accesses

Abstract

Vesicular traffic provides a dynamic and elaborate communication network between the subcellular compartments that define the structure and identity of membrane-bound organelles (Bonifacino and Glick 2004). The molecular and structural mechanisms that direct lipid and protein cargo flow between discontinuous subcellular organelles involve specialized multi-protein machineries that are defined by the molecular and structural properties of cytosolic coat protein complexes (0Bonifacino and Lippincott-Schwartz 2003). The Golgi apparatus is certainly involved in this flow. The endoplasmicreticulum (ER) is responsible for the synthesis of the proteins of most of the cellular organelles. Newly synthesized secretory proteins are translated at the rough ER and translocated into the ER lumen or ER membrane through the translocation channel, where they undergo folding, assembly and post-translational modifications with the aid of a variety of ER chaperones. Correctly folded and assembled secretory proteins are then segregated from ER resident proteins and transported to the Golgi apparatus for further processing and secretion. The ER-to-Golgi transport step is thought to occur via membrane-bound vesicles or carrier intermediates, which are formed by the assembly of the coat protein complex II (COPII) on the ER membranes. COPII is the name given to a cytosolic protein complex required for direct capture of cargo molecules and for the physical deformation of the ER membrane that drives the formation of the so-called “COPII vesicles” or carrier intermediates in anterograde transport from the ER to the Golgi. Protein export by COPII vesicle from the ER is the default ER-to-Golgi route that has been proposed in yeast and mammals. Cargo proteins that are destined for delivery to the Golgi apparatus need not only refer to newly synthesized biosynthetic cargo molecules, but also a variety of other machinery proteins that constantly cycle between the ER and the Golgi are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonny B, Madden D, Hamamoto S, Orci L, Schekman R (2001) Dynamics of the COPII coat with GTP and stable analogues. Nat Cell Biol 3: 531–537

    Article  PubMed  CAS  Google Scholar 

  • Bannykh SI, Rowe T, Balch WE (1996) The organization of endoplasmicreticulum export complexes. J Cell Biol 135: 19–35

    Article  PubMed  CAS  Google Scholar 

  • Barlowe C (2003) Signals for COPII-dependent export from the ER: what’s the ticket out? Trends Cell Biol 13: 295–300

    Article  PubMed  CAS  Google Scholar 

  • Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77: 895–907

    Article  PubMed  CAS  Google Scholar 

  • Barlowe C, Schekman R (1993) SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature 365: 347–349

    Article  PubMed  CAS  Google Scholar 

  • Ben-Tekaya H, Miura K, Pepperkok R, Hauri HP (2005) Live imaging of bidirectional traffic from the ERGIC. J Cell Sci 118: 357–367

    Article  PubMed  CAS  Google Scholar 

  • Bi X, Corpina RA, Goldberg J (2002) Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419: 271–277

    Article  PubMed  CAS  Google Scholar 

  • Bielli A, Haney CJ, Gabreski G, Watkins SC, Bannykh SI, Aridor M (2005) Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J Cell Biol 171: 919–924

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116: 153–166

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Lippincott-Schwartz J (2003) Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4: 409–414

    Article  PubMed  CAS  Google Scholar 

  • Connerly PL, Esaki M, Montegna EA, Strongin DE, Levi S, Soderholm J, Glick BS (2005) Sec16 is a determinant of transitional ER organization. Curr Biol 15: 1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Espenshade P, Gimeno RE, Holzmacher E, Teung P, Kaiser CA (1995) Yeast SEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. J Cell Biol 131:311–324

    Article  PubMed  CAS  Google Scholar 

  • Farsad K, De Camilli P (2003) Mechanisms of membrane deformation. Curr Opin Cell Biol 15:372–381

    Article  PubMed  CAS  Google Scholar 

  • Futai E, Hamamoto S, Orci L, Schekman R (2004) GTP/GDP exchange by Sec12p enables COPII vesicle bud formation on synthetic liposomes. Embo J 23: 4146–4155

    Article  PubMed  CAS  Google Scholar 

  • Gimeno RE, Espenshade P, Kaiser CA (1995) SED4 encodes a yeast endoplasmic reticulum protein that binds Sec16p and participates in vesicle formation. J Cell Biol 131: 325–338

    Article  PubMed  CAS  Google Scholar 

  • Gimeno RE, Espenshade P, Kaiser CA (1996) COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. Mol Biol Cell 7: 1815–1823

    PubMed  CAS  Google Scholar 

  • Heidtman M, Chen CZ, Collins RN, Barlowe C (2003) A role for Yip1p in COPII vesicle biogenesis. J Cell Biol 163: 57–69

    Article  PubMed  CAS  Google Scholar 

  • Heidtman M, Chen CZ, Collins RN, Barlowe C (2005) Yoslp is a novel subunit of the Yip1p-Yif1p complex and is required for transport between the endoplasmic reticulum and the Golgi complex. Mol Biol Cell 16: 1673–1683

    Article  PubMed  CAS  Google Scholar 

  • Hicke L, Yoshihisa T, Schekman R (1992) Sec23p and a novel 105-kDa protein function as a multimeric complex to promote vesicle budding and protein transport from the endoplasmic reticulum. Mol Biol Cell 3: 667–676

    PubMed  CAS  Google Scholar 

  • Huang M, Weissman JT, Beraud-Dufour S, Luan P, Wang C, Chen W, Aridor M, Wilson IA, Balch WE (2001) Crystal structure of Sar1-GDPat 1.7 Aresolution and the role of the NH2 terminus in ER export. J Cell Biol 155: 937–948

    Article  PubMed  CAS  Google Scholar 

  • Kuehn MJ, Herrmann JM, Schekman R (1998) COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391: 187–190

    Article  PubMed  CAS  Google Scholar 

  • Lederkremer GZ, Cheng Y, Petre BM, Vogan E, Springer S, Schekman R, Walz T, Kirchhausen T (2001) Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Proc Natl Acad Sci USA 98: 10704–10709

    Article  PubMed  CAS  Google Scholar 

  • Lee MC, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R (2005) SarlpN-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122:605–617

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Orci L, Amherdt M, Bednarek SY, Hamamoto S, Schekman R, Yeung T (1998) COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93: 263–275

    Article  PubMed  CAS  Google Scholar 

  • Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114: 497–509

    Article  PubMed  CAS  Google Scholar 

  • Mossessova E, Bickford LC, Goldberg J (2003) SNARE selectivity of the COPII coat. Cell 114: 483–495

    Article  PubMed  CAS  Google Scholar 

  • Nakano A, Brada D, Schekman R (1988) A membrane glycoprotein, Sec12p, required for protein transport from the endoplasmic reticulum to the Golgi apparatus in yeast. J Cell Biol 107: 851–863

    Article  PubMed  CAS  Google Scholar 

  • Nakano A, Muramatsu M (1989) A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol 109: 2677–2691

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Nakano A (1994) Inhibition of GTP hydrolysis by Sar1p causes accumulation of vesicles that are a functional intermediate of the ER-to-Golgi transport in yeast. J Cell Biol 124:425–434

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Ravazzola M, Meda P, Holcomb C, Moore HP, Hicke L, Schekman R (1991) Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc Natl Acad Sci USA 88: 8611–8615

    Article  PubMed  CAS  Google Scholar 

  • Pagano A, Letourneur F, Garcia-Estefania D, Carpentier JL, Orci L, Paccaud JP (1999) Sec24 proteinsand sorting at the endoplasmic reticulum. J Biol Chem 274:7833–7840

    Article  PubMed  CAS  Google Scholar 

  • Rossanese OW, Soderholm J, Bevis BJ, Sears IB, O’Connor J, Williamson EK, Glick BS (1999) Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol 145: 69–81

    Article  PubMed  CAS  Google Scholar 

  • Saito-Nakano Y, Nakano A (2000) Sed4p functions as a positive regulator of Sar1p probably through inhibition of the GTPase activation by Sec23p. Genes Cells 5: 1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Salama NR, Yeung T, Schekman RW (1993) The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins. EMBOJ 12:4073–4082

    CAS  Google Scholar 

  • Sannerud R, Marie M, Nizak C, Dale HA, Pernet-Gallay K, Perez F, Goud B, Saraste J (2006) Rab1 definesa novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery. Mol Biol Cell 17: 1514–1526

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Nakano A (2005) Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat Struct Mol Biol 12: 167–174

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Sato K, Nakano A (1996) Endoplasmic reticulum localization of Sec12p is achieved by two mechanisms: Rer1p-dependent retrieval that requires the trans-membrane domain and Rer1 p-independent retention that involves the cytoplasmic domain. J Cell Biol 134: 279–293

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz DA, Espenshade PJ, Gimeno RE, Kaiser CA (1997) COPII subunit interactions in the assembly of the vesicle coat. J Biol Chem 272: 25413–25416

    Article  PubMed  CAS  Google Scholar 

  • Stagg SM, Gurkan C, Fowler DM, LaPointe P, Foss TR, Potter CS, Carragher B, Balch WE (2006) Structure of the Sec13/31 COPII coat cage. Nature 439: 234–238

    Article  PubMed  CAS  Google Scholar 

  • Supek F, Madden DT, Hamamoto S, Orci L, Schekman R (2002) Sec16p potentiates the action of COPII proteins to bud transport vesicles. J Cell Biol 158: 1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Tang BL, Ong YS, Huang B, Wei S, Wong ET, Qi R, Horstmann H, Hong W (2001) A membrane protein enriched in endoplasmic reticulum exit sites interacts with COPII. J Biol Chem 276: 40008–40017

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Hay JC (2004) Reconstitution of COPII vesicle fusion to generate a pre-Golgi intermediate compartment. J Cell Biol 167: 997–1003

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Matern HT, Gallwitz D (1998) Specific binding to a novel and essential Golgi membrane protein (Yip1p) functionally links the transport GTPases Ypt1p and Ypt31p. Embo J 17: 4954–4963

    Article  PubMed  CAS  Google Scholar 

  • Yoshihisa T, Barlowe C, Schekman R (1993) Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259: 1466–1468

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sato, K., Nakano, A. (2008). COPII. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_6

Download citation

Publish with us

Policies and ethics