Skip to main content

A hyperbolic non equilibrium model for cavitating flows

  • Chapter
Fluid Dynamics of Cavitation and Cavitating Turbopumps

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 496))

Abstract

A hyperbolic two-phase flow model involving five partial differential equations is built for liquid-gas interface modelling. The model is able to deal with interfaces of simple contact where normal velocity and pressure are continuous as well as transition fronts where heat and mass transfer occur, involving pressure and velocity jumps. These fronts correspond to extra waves into the system. The model involves two temperatures and entropies but a single pressure and a single velocity. The closure is achieved by two equations of state that reproduce the phase diagram when equilibrium is reached. Relaxation toward equilibrium is achieved by temperature and chemical potential relaxation terms whose kinetics is considered infinitely fast only at specific locations, typically at evaporation fronts. Doing so, metastable states are involved for locations far from these fronts. Specific numerical hyperbolic and relaxation solver are built to solve the non-conservative system. Computational tests are done in 1D and 2D and are compared to experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • R. Abgrall and R. Saurel. Discrete equations for physical and numerical compressible multiphase mixtures. Journal of Computational Physics, 186(2):361–396, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • M.R. Baer and J.W. Nunziato. A two-phase mixture theory for the deflagration-todetonation transition (DDT) in reactive granular materials. Int. J. of Multiphase Flows, 12:861–889, 1986.

    Article  MATH  Google Scholar 

  • P.B. Butler, M.F. Lambeck, and H. Krier. Modeling of shock development and transition to detonation initiated by burning in porous propellant beds. Comb. Flame, 46:75–93, 1982.

    Article  Google Scholar 

  • J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system i: Interfacial free energy. J. Chem. Physics, 28(2):258, 1958.

    Article  Google Scholar 

  • A. Chinnayya, E. Daniel, and R. Saurel. Computation od detonation waves in heterogeneous energetic materials. Journal of Computational Physics, 196:490–538, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • J.M. Delhaye and J.A. Boure. General Equations and Two-Phase Flow Modeling. In: Handbook of Multiphase Systems. In: Handbook of Multiphase Systems, edited by G. Hestroni, Hemisphere Publishing Corp., New-York, 1982.

    Google Scholar 

  • E. Faucher, J.M. Herard, M. Barret, and C. Toulemonde. Computation of flashing flows in variable cross section ducts. Int. J. Comp. Fluid Dynamics, 13(4):365–391, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • D.L. Frost, J.H.S. Lee, and G. Ciccarelli. The use of hugoniot analysis for the propagation of vapor explosion waves. Shock Waves, 1:99–110, 1991.

    Article  Google Scholar 

  • M. Ishii. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris, 1975.

    MATH  Google Scholar 

  • D. Jamet, O. Lebaigue, N. Coutris, and J.M. Delhaye. The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. J. Comp. Physics, 169:624–651, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Kapila, R. Menikoff, J. Bdzil, S. Son, and D. Stewart. Two-phase modeling of DDT in granular materials: reduced equations. Physics of Fluids, 13:3002–3024, 2001.

    Article  Google Scholar 

  • Th. Kurschat, H. Chaves, and G.E.A. Meier. Complete adiabatic evaporation of highly superheated liquid jets. J. Fluid Mech., 236:43–59, 1992.

    Article  Google Scholar 

  • M.S. Liou and J.R. Edwards. AUSM Schemes and Extensions for Low Mach and Multiphase Flows. 30th Computational Fluid Dynamics, March 8–12, Lect. Series 1999-03, Von Karman Institute for Fluid Dynamics, 1999.

    Google Scholar 

  • O. Le Métayer, J. Massoni, and R. Saurel. Elaboration equations of state of a liquid and its vapor for two-phase flow models. Int. J. of Thermal Sciences, 43:265–276, 2004.

    Article  Google Scholar 

  • O. Le Métayer, J. Massoni, and R. Saurel. Modeling evaporation fronts with reactive riemann solvers. Journal of Computational Physics, 205:567–610, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Oldenbourg. Properties of water and steam in si-units. Springer, 1989.

    Google Scholar 

  • G. Perigaud and R. Saurel. A compressible flow model with capillary effects. J. Comp. Phys., 209:139–178, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Petitpas, E. Franquet, R. Saurel, and O. Le Métayer. A relaxation-projection method for compressible single phase and multiphase flows. Part II: Artificial heat exchanges for multiphase shocks. Journal of Computational Physics, 2007. In press.

    Google Scholar 

  • P. Reinke and G. Yadigaroglu. Explosive vaporization of superheated liquids by boiling fronts. Int. J. of Multiphase Flows, 27:1487–1516, 2001.

    Article  MATH  Google Scholar 

  • R. Saurel and R. Abgrall. A multiphase Godunov method for compressible multifluid and multiphase flows. Journal of Computational Physics, 150:425–467, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Saurel, J.P. Cocchi, and P.B. Butler. A numerical study of cavitation in the wake of a hypervelocity underwater projectile. J. of Propulsion and Power, 15(4):513–522, 1999.

    Article  Google Scholar 

  • R. Saurel, E. Franquet, E. Daniel, and O. Le Métayer. A relaxation-projection method for compressible single phase and multiphase flows. Part I: The numerical equation of state for the Euler equations. Journal of Computational Physics, 223:822–845, 2007a.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Saurel, S. Gavrilyuk, and F. Renaud. A multiphase model with internal degrees of freedom: application to shock-bubble interaction. Journal of Fluid Mechanics, 495: 283–321, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Saurel and O. Le Métayer. A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. Journal of Fluid Mechanics, 431:239–271, 2001.

    Article  MATH  Google Scholar 

  • R. Saurel, O. Le Métayer, J. Massoni, and S. Gavrilyuk. Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves, 16:209–232, 2007b.

    Article  Google Scholar 

  • J.R. Simões-Moreira and J.E. Shepherd. Evaporation waves in superheated dodecane. J. Fluid Mech., 382:63–86, 1999.

    Article  MATH  Google Scholar 

  • P.A. Thompson, H. Chaves, G.E.A Meier, Y.G. Kim, and H.D. Speckmann. Wave splitting in a fluid of large heat capacity. J. Fluid Mech., 185:385–414, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM, Udine

About this chapter

Cite this chapter

Saurel, R., Petitpas, F. (2007). A hyperbolic non equilibrium model for cavitating flows. In: d’Agostino, L., Salvetti, M.V. (eds) Fluid Dynamics of Cavitation and Cavitating Turbopumps. CISM International Centre for Mechanical Sciences, vol 496. Springer, Vienna. https://doi.org/10.1007/978-3-211-76669-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-76669-9_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-76668-2

  • Online ISBN: 978-3-211-76669-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics