Skip to main content

Modelling, simulation and control of flexible multibody systems

  • Chapter
Simulation Techniques for Applied Dynamics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 507))

Abstract

This chapter concerns the dynamic analysis of flexible multibody systems. After a brief review of the intertial frame, the corotational frame and the floating frame approaches, a general simulation framework is presented in detail. Based on the finite element concept, the proposed approach allows the coupled analysis of dynamic systems composed of rigid and flexible bodies, kinematic joints and control elements. The text is illustrated with some didactic examples and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M. Arnold and O. Brüls. Convergence of the generalized-α scheme for constrained mechanical systems. Multibody System Dynamics, 18(2):185–202, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  • Z. Bai and Y. Su. Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method. SIAM Journal on Scientific Computing, 26(5):1692–1709, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • O. Bauchau and L. Trainelli. The vectorial parameterization of rotation. Nonlinear Dynamics, 32:71–92, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Belytschko and J. Hsieh. Non-linear transient finite element analysis with convected co-ordinates. International Journal for Numerical Methods in Engineering, 7:255–271, 1973.

    Article  MATH  Google Scholar 

  • P. Betsch and P. Steinmann. Constrained integration of rigid body dynamics. Computer Methods in Applied Mechanics and Engineering, 191: 467–488, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • O. Brüls and M. Arnold. The generalized-α scheme as a linear multistep integrator: Towards a general mechatronic simulator. ASME Journal of Computational and Nonlinear Dynamics, 13 pages, accepted, 2008.

    Google Scholar 

  • O. Brüls and J.-C. Golinval. On the numerical damping of time integrators for coupled mechatronic systems. Computer Methods in Applied Mechanics and Engineering, 197(6–8):577–588, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  • O. Brüls, P. Duysinx, and J.-C. Golinval. The global modal parameterization for nonlinear model-order reduction in flexible multibody dynamics. International Journal for Numerical Methods in Engineering, 69(5):948–977, 2007.

    Article  MathSciNet  Google Scholar 

  • A. Cardona and M. Géradin. A beam finite element non-linear theory with finite rotations. International Journal for Numerical Methods in Engineering, 26:2403–2438, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Cardona and M. Géradin. Time integration of the equations of motion in mechanism analysis. Computers and Structures, 33:801–820, 1989.

    Article  MATH  Google Scholar 

  • A. Cardona and M. Géradin. A superelement formulation for mechanism analysis. International Journal for Numerical Methods in Engineering, 32(8):1565–1594, 1991.

    Article  MATH  Google Scholar 

  • J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. ASME Journal of Applied Mechanics, 60:374–375, 1993.

    MathSciNet  Google Scholar 

  • R. Craig and M. Bampton. Coupling of substructures for dynamic analysis. AIAA Journal, 6(7):1313–1319, 1968.

    Article  MATH  Google Scholar 

  • M.A. Crisfield and G. Jelenic. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proceedings of the Royal Society of London A, 455: 1125–1147, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • M.A. Crisfield, U. Galvanetto, and G. Jelenic. Dynamics of 3-D corotational beams. Computational Mechanics, 20:507–519; 1997.

    Article  MATH  Google Scholar 

  • S. Erlicher, L. Bonaventura, and O.S. Bursi. The analysis of the generalized-α method for non-linear dynamic problems. Computational Mechanics, 28:83–104, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Fraeijs de Veubeke. The dynamics of flexible bodies. International Journal of Engineering Science, 14:895–913, 1976.

    Article  MATH  Google Scholar 

  • M. Géradin and A. Cardona. Flexible Multibody Dynamics: A Finite Element Approach. John Wiley & Sons, New York, 2001.

    Google Scholar 

  • K.D. Glover. All optimal Hankel-norm approximation of linear multivariable systems and their L -error bounds. International Journal of Control, 39(6):1115–1193, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • E.J. Grimme. Krylov projection methods for model reduction. PhD thesis, ECE Department Univ. Of Illinois, Urbana-Champaign, 1997.

    Google Scholar 

  • H. Hilber, T. Hughes, and R. Taylor. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics, 5:283–292, 1977.

    Article  Google Scholar 

  • J.D. Huggins. Experimental verification of a model of a two-link flexible, lightweight manipulator. Master’s thesis, Georgia Institute of Technology, 1988.

    Google Scholar 

  • K.E. Jansen, C.H. Whiting, and G.M. Hulbert. A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering, 190:305–319, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • H.-J. Lai, E.J. Haug, S.S. Kim, and D.-S. Bae. A decoupled flexible-relative co-ordinate recursive approach for flexible multibody dynamics. International Journal for Numerical Methods in Engineering, 32:1669–1690, 1991.

    Article  MATH  Google Scholar 

  • C. Lauwerys, J. Swevers, and P. Sas. Model free design for a semi-active suspension of a passenger car. In Proc. of ISMA 2004, Leuven, Belgium, September 2004.

    Google Scholar 

  • E.V. Lens and A. Cardona. A nonlinear beam element formulation in the framework of an energy preserving time integration scheme for constrained multibody systems dynamics. Computers and Structures, 86: 47–63, 2008.

    Article  Google Scholar 

  • R. Mac Neal. A hybrid method of component mode synthesis. Computers and Structures, 1:581–601, 1971.

    Article  Google Scholar 

  • L. Meirovitch and M.-K. Kwak. Rayleigh-Ritz based substructure synthesis for flexible multibody dynamics. AIAA Journal, 28:1709–1719, 1991.

    Article  Google Scholar 

  • D.G. Meyer and S. Srinivasan. Balancing and model reduction for secondorder form linear systems. IEEE Transactions on Automatic Control, 41(11): 1632–1644, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • B.C. Moore. Principal component analysis in linear systems: Controllability, observability and model reduction. IEEE Transactions on Automatic Control, 26:17–32, 1981.

    Article  MATH  Google Scholar 

  • N. Newmark. A method of computation for structural dynamics. ASCE Journal of the Engineering Mechanics Division, 85:67–94, 1959.

    Google Scholar 

  • S. Rubin. Improved component mode representation for structural dynamics analysis. AIAA Journal, 13(8):995–1006, 1975.

    Article  MATH  Google Scholar 

  • A.A. Shabana and R.A. Wehage. A coordinate reduction technique for dynamic analysis of spatial substructures with large angular rotations. Journal of Structural Mechanics, 11:401–431, 1983.

    Google Scholar 

  • J.C. Simo. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering, 49:55–70, 1985.

    Article  MATH  Google Scholar 

  • J.C. Simo and L. Vu-Quoc. On the dynamics in space of rods undergoing large motions — a geometrically exact approach. Computer Methods in Applied Mechanics and Engineering, 66:125–161, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  • T.J. Su and R.J. Craig. Model reduction and control of flexible structures using Kryolov vectors. AIAA Journal of Guidance, Control, and Dynamics, 14(2):260–267, 1991.

    Article  Google Scholar 

  • O. Wallrapp and R. Schwertassek. Representation of geometric stiffening in multibody system simulation. International Journal for Numerical Methods in Engineering, 32(8):1833–1850, 1991.

    Article  MATH  Google Scholar 

  • T.M. Wasfy and A.K. Noor. Computational strategies for flexible multibody systems. Applied Mechanics Review, 56(6):553–613, 2003.

    Article  Google Scholar 

  • T.R. Wilson. The design and construction of flexible manipulators. Master’s thesis, Georgia Institute of Technology, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 CISM, Udine

About this chapter

Cite this chapter

Brüls, O., Cardona, A., Géradin, M. (2008). Modelling, simulation and control of flexible multibody systems. In: Arnold, M., Schiehlen, W. (eds) Simulation Techniques for Applied Dynamics. CISM International Centre for Mechanical Sciences, vol 507. Springer, Vienna. https://doi.org/10.1007/978-3-211-89548-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-89548-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-89547-4

  • Online ISBN: 978-3-211-89548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics