Skip to main content

Numerical Simulation of Thermal Oxidation Process in Semiconductor Devices Using Mixed—Hybrid Finite Elements

  • Chapter
Mixed Finite Element Technologies

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 509))

  • 1502 Accesses

Abstract

In this lecture, we present the basic mathematical and numerical tools for the simulation of the thermal oxidation process in semiconductor device technology. The mathematical model is first reviewed, emphasizing that it requires at each time level the solution of a diffusion-reaction problem and a fluid-structure interaction problem. Then, mixed-hybrid finite elements are introduced for the numerical approximation of each differential subproblem, with a detailed discussion of the static condensation procedure to eliminate the mixed variables in favor of the hybrid Lagrange multipliers. Several numerical examples are included to validate the accuracy and stability of the proposed computational procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. D. Arnold, F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, Math. Modeling and Numer. Anal. 19-1 (1985) 7–32.

    MathSciNet  Google Scholar 

  2. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Verlag, New York, 1991.

    MATH  Google Scholar 

  3. P. Causin, Mixed-Hybrid Galerkin and Petrov-Galerkin Finite Element Formulations in Fluid Mechanics, Ph. D. thesis, Università degli Studi di Milano, web-site: http://mox.polimi.it (2002).

    Google Scholar 

  4. C. Carstensen, P. Causin, R. Sacco, A Posteriori Dual-Mixed (Hybrid) Adaptive Finite Element Error Control for Lamè and Stokes Equations, Numer. Math. (101), 309–332 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Causin, R. Sacco, A dual-mixed hybrid formulation for fluid mechanics problems: mathematical analysis and application to semiconductor process technology, Comp. Meth. Appl. Mech. Engrng. (192), 593–612 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Causin, M. Restelli, R. Sacco, A simulation system based on mixed-hybrid finite elements for thermal oxidation in semiconductor technology, Comput. Methods Appl. Mech. Engrg. (193), 3687–3710 (2004).

    Article  MATH  Google Scholar 

  7. B. Cockburn, J. Gopalakhrisnan, A characterization of hybridized mixed methods for second order elliptic problems, SIAM J. Numer. Anal. (42), 283–301 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Cockburn, J Gopalakhrisnan, Error analysis of variable degree mixed methods for elliptic problems via hybridization, Math. Comp. (74), 1653–1677 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Farhloul, M. Fortin, Dual hybrid methods for the elasticity and the Stokes problems: a unified approach, Numer. Math. 76-4 (1997) 419–440.

    Article  MathSciNet  Google Scholar 

  10. S.E. Hansen, M.D. Deal, SUPREM-IV.GS User’s Reference Manual, Stanford University, 1994.

    Google Scholar 

  11. L. Herrmann, Elasticity equations for incompressible and nearly—incompressible materials by a variational theorem, AIAA Jnl. 3–10 (1965) 1896–1900.

    Google Scholar 

  12. L. Herrmann, R. Taylor, K. Pister, On a variational theorem for incompressible and nearly-incompressible orthotropic elasticity, Int. J. Solids Structures 4 (1968) 875–883.

    Article  MATH  Google Scholar 

  13. T.J.R. Hughes, The Finite Element Method—Linear static and dynamic finite element analysis (Cap. 4), Prentice-Hall (1987).

    Google Scholar 

  14. J.P. Peng, D. Chidambarrao, G.r. Srinavasan, NOVEL. A nonlinear viscoelastic model forar thermal oxidation of silicon, COMPEL, 10(4) (1991) 341–353.

    Google Scholar 

  15. C. Rafferty, Stress effects in silicon oxidation—simulation and experiment, Ph.D. thesis, Stanford University (1990).

    Google Scholar 

  16. V. Rao, T.J.R. Hughes, K. Garikipati, On modeling thermal oxidation in silicon. Part i-ii, Int. J. Num. Meth. Engr. 47 (2000) 341–377.

    Article  MATH  Google Scholar 

  17. P. Raviart, J. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comp. 31–138 (1977) 391–413.

    Article  MathSciNet  Google Scholar 

  18. P. Riviart, J. Thomas, A mixed finite element method for second order elliptic problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of Finite Element Methods, I, Springer-Verlag Berlin, 1977.

    Google Scholar 

  19. J. Roberts, J. Thomas, Mixed and hybrid methods, in: P. Ciarlet, J. Lions (Eds.), Finite Element Methods, Part I, North-Holland Amsterdam, 1991, vol. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 CISM, Udine

About this chapter

Cite this chapter

Sacco, R. (2009). Numerical Simulation of Thermal Oxidation Process in Semiconductor Devices Using Mixed—Hybrid Finite Elements. In: Carstensen, C., Wriggers, P. (eds) Mixed Finite Element Technologies. CISM International Centre for Mechanical Sciences, vol 509. Springer, Vienna. https://doi.org/10.1007/978-3-211-99094-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99094-0_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99092-6

  • Online ISBN: 978-3-211-99094-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics