Skip to main content

Extremophiles in Antarctica: Life at low temperatures

  • Chapter
Adaption of Microbial Life to Environmental Extremes

Abstract

In this chapter, we will explore the different adaptations of extremophiles to life in the extreme cold. We generally forget that the Earth is mostly cold and that most ecosystems are exposed to temperatures that are permanently below 5°C. Such low mean temperatures mainly arise from the fact that ≈70% of the Earth’s surface is covered by oceans that have a constant temperature of 4–5°C (below a depth of 1000 m), irrespective of the latitude. The polar regions account for another 15% of the surface, to which the glacier and alpine regions must also be added. Here, we will take an illustrated look in particular at the Antarctic environment, as it is by far the coldest environment on Earth — the lowest temperature on the surface of the Earth (−89.2°C) was recorded at the Russian Vostok Station, at the centre of the East Antarctic ice sheet. Antarctica is a place where organisms are often subjected to combined stresses including desiccation, limited nutrients, high salinity, adverse solar radiation and low biochemical activity. The incredibly harsh environment of the Antarctic continent precludes life in most of its forms, and the microorganisms are therefore dominant.

Generally, conditions include air temperatures that average well below freezing all year round, strong winds that increase the effects of the cold, light which varies from months of total darkness to total sunlight and little free available water, with all but 2% of the continent covered with ice. Given this combination of extremes, it is surprising that anything lives on the continent at all, let alone thrives there. For the organisms that do manage to adapt, however, the benefits from a lack of competition in the extreme cold are enormous, and this is often seen in very large population sizes. So how do some organisms survive extreme cold, and others exploit and take advantage of it? As organisms have been subjected to these stresses over extremely long periods of time, a range of adaptations have evolved; some species have adapted to live at the limits, some produce specific compounds such as antifreeze, some remain viable but frozen in a state of suspended animation whilst higher organisms can adapt their life cycles in such a way that when conditions are harsh they die, leaving the next generation to recover as conditions improve. By looking at a range of different strategies in a wide variety of organisms, it is hoped to bring together general mechanisms of adaptation to life in the extreme cold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abyzov SS, Mitskevich IN, Poglazova MN, Barkov IN, Lipenkov VY, Bobin NE, Koudryashov BB, Pashkevich VM, Ivanov MV (2001) Microflora in the basal strata at Antarctic ice core above the Vostok lake. Adv Space Res 28:701–706

    PubMed  CAS  Google Scholar 

  • Ah Tow L, Cowan DA (2005) Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments. Extremophiles 9:385–389

    Google Scholar 

  • Alam SI, Singh L, Dube S, Reddy GS, Shivaji S (2003) Psychrophilic Planococcus maitriensis sp.nov. from Antarctica. Syst Appl Microbiol 26:505–510

    PubMed  CAS  Google Scholar 

  • Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KWY, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin, E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold-adaptation. ISME J 3:1012–1035

    PubMed  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078.

    PubMed  CAS  Google Scholar 

  • Bowman JP, McCuaig RD (2003) Diversity and biogeography of prokaryotes dwelling in Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2484

    PubMed  CAS  Google Scholar 

  • Brizzio S, Turchetti B, de Garcíia V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    PubMed  CAS  Google Scholar 

  • Brock TD (1961) Milestones in microbiology. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Bulat SA, Alekhina IA, Krylenkov VA, Lukin VV (2002) Molecular biological studies of microbiota in subglacial lake Vostok (the Antarctic). Adv Curr Biol 122:211–221 [in Russian]

    CAS  Google Scholar 

  • Bulat SA, Alekhina IA, Lipenkov VYa, Lukin VV, Marie D, Petit JR (2009) Cellular concentrations of microorganisms in glacial and lake ice of the Vostok ice core, East Antarctica. Microbiology 78:808–810

    CAS  Google Scholar 

  • Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air-and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260

    PubMed  CAS  Google Scholar 

  • Campanaro S, Williams TJ, De Francisci D, Treu L, Lauro FM, Cavicchioli R (2010) Temperaturedependent global gene expression in the Antarctic archaeon Methanococcoides burtonii. Environ Microbiol. DOI: 10.1111/j.1462-2920.2010.02367.x [online November 8]

    Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138

    PubMed  CAS  Google Scholar 

  • Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2:281-292 Chattopadhyay MK (2000) Cold adaptation of Antarctic microorganisms — possible involvement of viable but non culturable state. Polar Biol 23:223–224

    Google Scholar 

  • Chong CW, Dunn MJ, Convey P, Annie Tan GY, Wong, RCS, Tan IKP (2009) Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. Polar Biol 32:1571–1582

    Google Scholar 

  • Chong CW, Pearce DA, Convey P, Tan GYA, Wong RCS, Tan IKP (2010) High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Singy Island, Antarctica. Soil Biol Biogeochem 42:601–610

    CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485

    Google Scholar 

  • Christner BC, Kvitko BH, Reeve JN (2003) Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    PubMed  CAS  Google Scholar 

  • Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M, Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501

    Google Scholar 

  • Clocksin KM, Jung DO, Madigan MT (2007) Cold-active chemoorganotrophic bacteria from permanently ice-covered Lake Hoare, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 73:3077–3083

    PubMed  CAS  Google Scholar 

  • Danks HV (2002) Modification of adverse conditions by insects. Oikos 99:10–24

    Google Scholar 

  • de Pascale D, Cusano AM, Autore F, Parrilli E, di Prisco G, Marino G, Tutino ML (2008) The coldactive Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12:311–323

    PubMed  CAS  Google Scholar 

  • Deegenaars ML, Watson K (1998) Heat shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–49

    PubMed  CAS  Google Scholar 

  • DeLong EF (1998) Everything in moderation: Archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8:649–654

    PubMed  CAS  Google Scholar 

  • Devos N, Ingouff M, Loppes R, Matagne RF (1998) RUBISCO adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:655–660

    CAS  Google Scholar 

  • Dieser M, Greenwood M, Foreman CM (2010) Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. AAAR 42:396–405

    Google Scholar 

  • Donachie SP, Bowman JP, Alam M (2004) Psychroflexus tropicus sp. nov., an obligately halophilic Cytophaga — Flavobacterium — Bacteroides group bacterium from an Hawaiian hypersaline lake. Int J Syst Evol Microbiol 54:935–940

    PubMed  CAS  Google Scholar 

  • Duarte CM, Agustí S, Vaqué D, Agawin NSR, Felipe J, Casamayor EO, Gasol JM (2005) Experimental test of bacteria — phytoplankton coupling in the Southern Ocean. Limnol Oceanogr 50:1844–1854

    CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    PubMed  CAS  Google Scholar 

  • Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C (1997) Enzymes from cold-adapted microorganisms. The class C β-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244:186–191

    PubMed  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54:777–784

    Google Scholar 

  • Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10:207–214

    PubMed  CAS  Google Scholar 

  • Fields PA (2001) Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A 129:417–431

    CAS  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    PubMed  CAS  Google Scholar 

  • Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400:828

    CAS  Google Scholar 

  • Finlay BJ, Esteban GF, Olmo JL, Tyler PA (1999) Global distribution of free-living microbial species. Ecography 22:138–144

    Google Scholar 

  • Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, De Macario EC, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072

    PubMed  CAS  Google Scholar 

  • Giaquinto L, Curmi PMG, Siddiqui KS, Poljak A, DeLong E, DasSarma S, Cavicchioli R (2007) The structure and function of cold shock proteins in archaea. J Bacteriol 189:5738–5748

    PubMed  CAS  Google Scholar 

  • Gilichinsky D, Wagener S, Vishnevetskaya T (1995) Permafrost microbiology. Permafrost Periglacial Process 6:281–291

    Google Scholar 

  • Gocheva YG, Tosi S, Krumova ET, Slokoska LS, Miteva JG, Vassilev SV, Angelova MB (2009) Temperature downshift induces antioxidant response in fungi isolated from Antarctica. Extremophiles 13:273–281

    PubMed  Google Scholar 

  • Herbert RA (1986) The ecology and physiology of psychrophilic microorganisms. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. The Society for General Microbiology, Academic Press, London, pp 1–24

    Google Scholar 

  • Herbert RA (1989) Microbial growth at low temperature. In: Gould GW (ed) Mechanisms of action of food preservation procedures. Elsevier Applied Science, London, pp 71–96

    Google Scholar 

  • Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P, Stackebrandt E, Anderson R (2004a) Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and drought-tolerating, UV resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645

    PubMed  CAS  Google Scholar 

  • Hirsch P, Mevs U, Kroppenstedt RM, Schumann P, Stackebrandt E (2004b) Cryptoendolithic actinomycetes from Antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 27:166–174

    PubMed  CAS  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York, USA

    Google Scholar 

  • Hua MX, Chi Z, Liu GL, Buzdar MA, Chi ZM (2010) Production of a novel and cold-active killer toxin by Mrakia frigida 2E00797 isolated from sea sediment in Antarctica. Extremophiles 14:515–521

    PubMed  CAS  Google Scholar 

  • Hughes J, Smith HG (1989) Temperature relations of Heteromita globosa Stein in Signy Island fellfields. In: Heywood RB (ed) Proceedings of British Antarctic Survey Antarctic Special Topic Award Scheme Symposium, 9–10 November 1988, University Research in Antarctica. British Antarctic Survey, Natural Environment Research Council, Cambridge, pp 117–122

    Google Scholar 

  • Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of airborne biodiversity over peninsular Antarctica. Cell Mol Biol 50:537–542

    PubMed  CAS  Google Scholar 

  • Jung DO, Achenbach LA, Karr EA, Takaichi S, Madigan MT (2004) A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182:236–243

    PubMed  CAS  Google Scholar 

  • Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147

    PubMed  CAS  Google Scholar 

  • Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) Proteomic studies of an Antarctic coldadapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles 11:819–826

    PubMed  CAS  Google Scholar 

  • Labrenz M, Lawson PA, Tindall BJ, Hirsch P (2009) Roseibaca ekhonensis gen. nov., sp. nov., an alkalitolerant and aerobic bacteriochlorophyll a-producing alphaproteobacterium from hypersaline Ekho Lake. Int J Syst Evol Microbiol 59:1935–1940

    PubMed  CAS  Google Scholar 

  • Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H (2009) Bacteria beneath the West Antarctic Ice Sheet. Environ Microbiol 11:609–615

    PubMed  CAS  Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 79:5963–5972

    Google Scholar 

  • Laybourn-Parry J (2002) Survival mechanisms in Antarctic lakes. Philos Trans R Soc Lond B Biol Sci 357(1423):863–869

    PubMed  CAS  Google Scholar 

  • Laybourn-Parry J (2009) No place too cold. Science 324:1521–1522

    PubMed  CAS  Google Scholar 

  • Laybourn-Parry J, Pearce DA (2007) The biodiversity and ecology of Antarctic lakes — models for evolution. Philos Trans R Soc Lond B Biol Sci 362(1488):2273–2289

    PubMed  CAS  Google Scholar 

  • Lee CC, Fenchel T (1972) Studies on ciliates associated with sea ice from Antartica. II. Temperature responses and tolerances in ciliates from Antarctic, temperate and tropical habitats. Arch Protistenk 114:237–244

    Google Scholar 

  • Li S, Xiao X, Yin X, Wang F (2006) Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica. Extremophiles 10:461–467

    PubMed  CAS  Google Scholar 

  • Liu S, Zhang P, Cong B, Liu C, Lin X, Shen J, Huang X (2010) Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Antarctic ice algae Chlamydomonas sp. ICE-L. Extremophiles 14:329–337

    PubMed  Google Scholar 

  • Mavromatis K, Feller G, Kokkinidis M, Bouriotis V (2003) Cold adaptation of a psychrophilic chitinase: a mutagenesis study. Protein Eng 16:497–503

    PubMed  CAS  Google Scholar 

  • Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    PubMed  Google Scholar 

  • Mikucki JA, Priscu JC (2007) Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73:4029–4039

    PubMed  CAS  Google Scholar 

  • Möhlmann DTF (2003) Unfrozen subsurface water on Mars: presence and implications. Int J Astrobiol 2:213–216

    Google Scholar 

  • Montes MJ, Mercade E, Bozal N, Guinea J (2004) Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54:1521–1526

    PubMed  CAS  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252

    PubMed  CAS  Google Scholar 

  • Naganuma T, Hua PN, Okamoto T, Ban S, Imura S, Kanda H (2005) Depth distribution of euryhaline halophilic bacteria in Suribati Ike, a meromictic lake in East Antarctica. Polar Biol 28:964–970

    Google Scholar 

  • Newsham KK, Pearce DA, Bridge PD (2010) Minimal influence of water and nutrient content on the bacterial community composition of a maritime Antarctic soil. Microbiol Res 165:523–530

    PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998) Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338

    PubMed  CAS  Google Scholar 

  • Olson JB, Steppe TF, Litaker RW, Paerl HW (1998) N2 fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 36:231–238

    PubMed  CAS  Google Scholar 

  • Pearce DA (2005) The structure and stability of the bacterioplankton community in Antarctic freshwater lakes, subject to extremely rapid environmental change. FEMS Microbiol Ecol 53:61–72

    PubMed  CAS  Google Scholar 

  • Pearce DA (2008) Climate change and the microbiology of the Antarctic Peninsula region. Sci Prog 91:203–217

    PubMed  Google Scholar 

  • Pearce DA (2009) Antarctic subglacial lakes — a new frontier in microbial ecology. ISME J 3:877–880

    PubMed  CAS  Google Scholar 

  • Pearce DA, Wilson WH (2003) Viruses in Antarctic ecosystems. Antarctic Sci 15:319–331

    Google Scholar 

  • Pearce DA, Bridge PD, Hughes K, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157

    PubMed  CAS  Google Scholar 

  • Pearce DA, Hughes KA, Harangozo SA, Lachlan-Cope TA, Jones AE (2010) Biodiversity of air-borne microorganisms at Halley station, Antarctica. Extremophiles 14:145–159

    PubMed  Google Scholar 

  • Pocock T, Lachance MA, Proschold T, Priscu JC, Kim SS, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis Ettl. (UWO 241) Chlorophyceae. J Phycol 40:1138–1148

    Google Scholar 

  • Poglazova MN, Mitskevich IN, Abyzov SS, Ivanov MV (2001) Microbiological characterization of the accreted ice of subglacial Lake Vostok, Antarctica. Microbiology 70:723–730

    CAS  Google Scholar 

  • Pointing SB, Chan Y Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Nat Acad Sci USA 106:19964–19969

    PubMed  CAS  Google Scholar 

  • Poli A, Esposito E, Orlando P, Lama L, Giordano A, de Appolonia F, Nicolaus B, Gambacorta A (2006) Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 30:31–38

    PubMed  Google Scholar 

  • Pommier T, Canback B, Riemann L, Bostrom KH, Simu K, Lundberg P, Unlid A, Hagström (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880

    PubMed  CAS  Google Scholar 

  • Prescott GW (1978) How to know the freshwater algae, 3rd edn. Wm C Brown, Dubuque, IA, USA

    Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Nat Acad Sci USA 97:1247–1251

    PubMed  CAS  Google Scholar 

  • Price PB (2006) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    Google Scholar 

  • Price PB, Nagornov OV, Bay R, Chirkin D, He Y, Miocinovic P, Richards A, Woschnagg K, Koci B, Zagorodnov V (2002) Temperature profile for glacial ice at the South Pole: implications for life in a nearby subglacial lake. Proc Natl Acad Sci USA 99:7844–7847

    PubMed  CAS  Google Scholar 

  • Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirshtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144

    PubMed  CAS  Google Scholar 

  • Priscu JC, Kennicutt II, MC, Bell RE, Bulat SA, Ellis-Evans JC, Lukin VV, Petit J-R, Powell RD, Siegert MJ, Tabacco I (2005) Exploring subglacial Antarctic Lake environments. Am Geophys Union EOS Trans 86:193–200

    Google Scholar 

  • Rakusa-Suszczewski S (1980) The role of near-shore research in gaining and understanding of the functioning of the Antarctic ecosystem. Pol Arch Hydrobiol 27:229–233

    Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    PubMed  CAS  Google Scholar 

  • Reddy GS, Prakash JS, Vairamani M, Prabhakar S, Matsumoto GI, Shivaji S (2002) Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 6:253–261

    PubMed  CAS  Google Scholar 

  • Reddy GS, Raghavan PU, Sarita NB, Prakash JS, Nagesh N, Delille D, Shivaji S (2003) Halomonas glaciei sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles 7:55–61

    PubMed  CAS  Google Scholar 

  • Reid IN, Sparks WB, Lubow S, McGrath M, Livio M, Valenti J, Sowers KR, Shukla HD, MacAuley S, Miller T, Suvanasuthi R, Belas R, Colman A, Robb FT, DasSarma P, Müller JA, Coker JA, Cavicchioli R, Chen F, DasSarma S (2006) Terrestrial models for extraterrestrial life: methanogens and halophiles at Martian temperatures. Int J Astrobiol 5:89–97

    Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242

    Google Scholar 

  • Saunders NF, Thomas T, Curmi PM, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, Feldman R, Gates C, Bench S, Sowers K, Kadner K, Aerts A, Dehal P, Detter C, Glavina T, Lucas S, Richardson P, Larimer F, Hauser L, Land M, Cavicchioli R (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588

    PubMed  CAS  Google Scholar 

  • Säwström C, Anesio MA, Granéli W, Laybourn-Parry J (2007) Seasonal viral loop dynamics in two large ultraoligotrophic Antarctic freshwater lakes. Microb Ecol 53:1–11

    PubMed  Google Scholar 

  • Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20:515–521

    PubMed  CAS  Google Scholar 

  • Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295:1514–1516

    PubMed  CAS  Google Scholar 

  • Sharp M, Parks J, Cragg B, Fairchild I, Lamb H, Tranter M (1999) Widespread bacterial population at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110

    CAS  Google Scholar 

  • Sheridan PP, Loveland-Curtze J, Miteva VI, Brenchley JE (2003) Rhodoglobus vestalii gen. nov. sp. nov., a novel psychrophilic organism isolated from an Antarctic Dry Valley Lake. Int J Syst Evol Microbiol 53:985–994

    PubMed  CAS  Google Scholar 

  • Shivaji S, Reddy GSN, Raghavan PUM, Sarita NB, Delille D (2004) Psychrobacter salsus sp. nov. and Psychrobacter adeliensis sp. nov. isolated from fast ice from Adelie Land, Antarctica. Syst Appl Microbiol 27:628–635

    PubMed  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold adapted enzymes. Annu Rev Biochem 75:403–433

    PubMed  CAS  Google Scholar 

  • Siegert MJ, Tranter M, Ellis-Evans JC, Priscu JC, Berry Lyons W (2003) The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrol Process 17:795–814

    Google Scholar 

  • Sjöling S, Cowan DA (2003) High 16S rDNA bacteria diversity in glacial meltwater lake sediment, Bratina island, Antarctica. Extremophiles 7:275–282

    PubMed  Google Scholar 

  • Smith JJ, Ah Tow L, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    PubMed  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microb Ecol 52:207–216

    PubMed  Google Scholar 

  • Spring S, Merkhoffer B, Weiss N, Kroppenstedt RM, Hippe H, Stackebrandt E (2003) Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. Int J Syst Evol Microbiol 53:1019–1029

    PubMed  CAS  Google Scholar 

  • Stingl U, Cho J-C, Foo W, Vergin KL, Lanoil B, Giovannoni SJ (2008) Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica. Microb Ecol 55:395–405

    PubMed  CAS  Google Scholar 

  • Tatur A (2002) Ornithogenic ecosystems in the Maritime Antarctic — formation, development and disintegration. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Series ecological studies, vol 154. Springer, Berlin, Heidelberg, pp 161–184

    Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice — a habitat for extremophiles. Science 295:641–644

    PubMed  CAS  Google Scholar 

  • Tindall B (2004) Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microb Ecol 47:271–283

    PubMed  CAS  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis assessed using quantitative proteomics. Environ Microbiol 12:2658–2676

    PubMed  CAS  Google Scholar 

  • Turner J, King JC, Lachlan-Cope TA, Jones PD (2002) Recent temperature trends in the Antarctic. Nature 418:291–292

    PubMed  CAS  Google Scholar 

  • Van Trappen S, Mergaert J, Eygen SV, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610

    PubMed  Google Scholar 

  • Van Trappen S, Mergaert J, Swings J (2003) Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 53:1241–1245

    PubMed  Google Scholar 

  • Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2004a) Algoriphagus antarcticus sp. nov., a novel psychrophile from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:1969–1973

    PubMed  Google Scholar 

  • Van Trappen S, Mergaert J, Swings J (2004b) Lokanella salsilacus gen. nov., sp. nov., Lokanella fryxellensis sp. nov. and Lokanella vestfoldensis sp. nov., new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54: 1263–1269

    PubMed  Google Scholar 

  • Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2004c) Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:85–92

    PubMed  Google Scholar 

  • Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2005) Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 55:769–772

    PubMed  Google Scholar 

  • Vishnivetskaya TA, Siletzky R, Jefferies N, Tiedje JM, Kathariou S (2007) Effect of low temperature and culture media on the growth and freeze — thawing tolerance of Exiguobacterium strains. Cryobiology 54:234–240

    PubMed  CAS  Google Scholar 

  • Willerslev E, Hansen A, Christensen B, Steffensen J, Arctander P (1999) Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci USA 96:8017–8021

    PubMed  CAS  Google Scholar 

  • Wilson WH, Lane D, Pearce DA, Ellis-Evans JC (2000) Transmission electron microscope analysis of virus-like particles in the freshwater lakes of Signy Island, Antarctica. Polar Biol 23:657–660

    Google Scholar 

  • Yergeau E, Schoondermark-Stolk SA, Brodie EL, Déjean S, DeSantis TZ, Gonçalves O, Piceno YM, Andersen GL, Kowalchuk GA (2008) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    PubMed  Google Scholar 

  • Yi H, Oh HM, Lee JH, Kim SJ, Chun J (2005a) Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 55:637–641

    PubMed  CAS  Google Scholar 

  • Yi H, Yoon HI, Chun J (2005b) Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic. Int J Syst Evol Microbiol 55:409–416

    PubMed  CAS  Google Scholar 

  • Yoshimune K, Galkin A, Kulakova L, Yoshimura T, Esaki N (2005) Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures. Extremophiles 9:145–150

    PubMed  CAS  Google Scholar 

  • Yu Y, Xin YH, Liu HC, Chen B, Sheng J, Chi ZM, Zhou PJ, Zhang DC (2008) Sporosarcina antarctica sp. nov., a psychrophilic bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 58:2114–2117

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Pearce, D.A. (2012). Extremophiles in Antarctica: Life at low temperatures. In: Stan-Lotter, H., Fendrihan, S. (eds) Adaption of Microbial Life to Environmental Extremes. Springer, Vienna. https://doi.org/10.1007/978-3-211-99691-1_5

Download citation

Publish with us

Policies and ethics