Skip to main content

Der muskuläre Energiestoffwechsel bei körperlicher Aktivität

  • Chapter
  • First Online:
Kompendium der Sportmedizin

Zusammenfassung

Ein Muskel kann nur dann über eine längere Zeitspanne kontrahiert werden, wenn eine ausreichende Konzentration von Adenosintriphosphat (ATP) in den kontraktilen Elementen gegeben ist. ATP ist das einzige Substrat, das in der Lage ist, die Muskelkontraktion direkt herbeizuführen. Ob Tiere oder Pflanzen, ATP dient als universelle biologische Speicher- und Überträgersubstanz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Andersson A, Sjodin A, Hedman A, Olsson R, Vessby B (2000) Fatty acid profile of skeletal muscle phospholipids in trained and untrained young men. Am J Physiol Endocrinol Metab 279(4): E744–751

    Google Scholar 

  • Bassit RA, Sawada LA, Bacurau RF, Navarro F, Martins E Jr, Santos RV, Caperuto EC, Rogeri P, Costa Rosa LF (2002) Branched-chain amino acid supplementation and the immune response of long-distance athletes. Nutrition 18(5): 376–379

    Article  CAS  PubMed  Google Scholar 

  • Bekedam MA, van Beek-Harmsen BJ, Boonstra A, van Mechelen W, Visser FC, van der Laarse WJ (2003) Maximum rate of oxygen consumption related to succinate dehydrogenase activity in skeletal muscle fibres of chronic heart failure patients and controls. Clin Physiol Funct Imaging 23(6): 337–343

    Article  CAS  PubMed  Google Scholar 

  • Bergström J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71(2): 140–150

    Article  PubMed  Google Scholar 

  • Bizeau ME, Willis WT, Hazel JR (1998) Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria. J Appl Physiol 85(4): 1279–1284

    CAS  PubMed  Google Scholar 

  • Blei ML, Conley KE, Kushmerick MJ (1993) Seperate measures of ATP utilization and recovery in human skeletal muscle. Journal of Physiology 465: 203–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blom CS (1989) Post-exercise glucose uptake and glycogen synthesis in human muscle during oral or i.v. glucose intake. Eur J Appl Physiol 59(5): 327–333

    Article  CAS  Google Scholar 

  • Blomstrand E, Saltin B (2001) BCAA intake affects protein metabolism in muscle after but not during exercise in humans. Am J Physiol Endocrinol Metab 281(2): E365–274

    Google Scholar 

  • Blomstrand E, Eliasson J, Karlsson HK, Köhnke R (2006) Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr 136 (1 Suppl): 269S–2673S

    CAS  PubMed  Google Scholar 

  • Bodner GM (1986) The tricarboxylic acid (TCA), citiric acid, Krebs cycle. J Chem Ed 63: 663–673

    Google Scholar 

  • Bonen A, Chabowski A, Luiken JJ, Glatz JF (2007) Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda) 22: 15–29

    CAS  Google Scholar 

  • Brouns F, Saris WHM, Stroecken J, Beckers E, Thijssen R, Rehrer P, Hoor F (1989a) Eating, drinking cycling. A controll Tour de France simulation study Part1. Int J Sports Med 10: S32–S40

    Article  Google Scholar 

  • Brouns F, Saris WHM, Stroecken J, Beckers E, Thijssen R, Rehrer P, Hoor F (1989b) Eating, drinking cycling. A controll Tour de France simulation study Part2. Int J Sports Med 10: S41–S48

    Article  Google Scholar 

  • Brouns F, Rehrer NJ, Saris WH, Beckers E, Menheere P, ten Hoor F (1989c) Effect of carbohydrate intake during warming-up on the regulation of blood glucose during exercise. Int J Sports Med 10 (Suppl): S68–75

    Article  Google Scholar 

  • Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ (2006) Endurance training in obese humans improves glucose tolerance, mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab 291: E99–E107

    Article  CAS  Google Scholar 

  • Burke LM, Collier GR, Hargreaves M (1993) Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings. J Appl Physiol 175(2): 1019–23

    Google Scholar 

  • Burke LM, Kiens B, Ivy JL (2004) Carbohydrates and fat for training and recovery. J Sports Sci 22(1): 15–30

    Article  PubMed  Google Scholar 

  • Carraro F, Naldini A, Weber JM, Wolfe RR (1994) Alanine kinetics in humans during low-intensity exercise. Med Sci Sports Exerc 263: 48–53

    Google Scholar 

  • Castell LM, Poortmans JR, Newsholme EA (1996) Does glutamine have a role in reducing infections in athletes? Eur J Appl Physiol Occup Physiol 73(5): 488–490

    Article  CAS  PubMed  Google Scholar 

  • Castell LM, Poortmans JR, Leclercq R, Brasseur M, Duchateau J, Newsholme EA (1997) Some aspects of the acute phase response after a marathon race, and the effects of glutamine supplementation. Eur J Appl Physiol Occup Physiol 75(1): 47–53

    Article  CAS  PubMed  Google Scholar 

  • Cermak NM, van Loon LJ (2013) The Use of Carbohydrates During Exercise as an Ergogenic Aid. Sports Med 43: 1139–1155

    Article  PubMed  Google Scholar 

  • Coggan AR, Raguso CA, Gastaldelli A, Sidossis LS, Yeckel CW (2000) Fat metabolism during high-intensity exercise in endurance-trained and untrained men. Metabolism 49(1): 122–128

    Article  CAS  PubMed  Google Scholar 

  • Connett RJ (1988) Analysis of metabolic control: new insights using scaled creatine kinase model. Am J Physiol 254: R949–959

    Google Scholar 

  • Coyle EF (1991) Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. J Sports Sci 9: 29–51

    Article  PubMed  Google Scholar 

  • Coyle EF, Hagberg JM, Hurley BF, Martin WH, Ehsani AA, Holloszy JO (1983) Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol 55: 230–235

    CAS  PubMed  Google Scholar 

  • Coyle EF, Coggan AR, Hemmert MK, Lowe RC, Walters TJ (1985) Substrate usage durin gprolonged exercise following a preexercise meal. J Appl Physiol 59: 429–433

    CAS  PubMed  Google Scholar 

  • Currell K, Jeukendrup AE (2008) Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc 40(2): 275–281

    Article  CAS  PubMed  Google Scholar 

  • Delp MD (1998) Differential effects of training on the control of skeletal muscle perfusion. Med Sci Sports Exerc 30(3): 361–734

    Article  CAS  PubMed  Google Scholar 

  • Deveci D, Marshall JM, Egginton S (2001) Relationship between capillary angiogenesis, fiber type, and fiber size in chronic systemic hypoxia. Am J Physiol Heart Circ Physiol 281(1): H241–52

    Google Scholar 

  • Di Camillo B, Eduati F, Nair SK, Avogaro A, Toffolo GM (2014) Leucine modulates dynamic phosphorylation events in insulin signaling pathway and enhances insulin-dependent glycogen synthesis in human skeletal muscle cells. BMC Cell Biol 20(15): 9

    Article  CAS  Google Scholar 

  • Dideriksen K, Reitelseder S, Holm L (2013) Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans. Nutrients 13(3): 852–876

    Article  CAS  Google Scholar 

  • Dyck DJ, Putman CT, Heigenhauser GJ, Hultman E, Spriet LL (1993) Regulation of fat-carbohydrate interaction in skeletal muscle during intense aerobic cycling. Am J Physiol 265: E852–859

    Google Scholar 

  • Dubouchaud H, Butterfield GE, Wolfel EE, Bergman BC, Brooks GA (2000) Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am J Physiol Endocrinol Metab 278(4): E571–579

    Google Scholar 

  • Ferguson SJ, Sorgato MC (1982) Proton electrochemical gradients and energy-transduction processes. Annu Rev Biochem 51: 185–217

    Article  CAS  PubMed  Google Scholar 

  • Fielding RA, Costill DL, Fink WJ, King DS, Hargreaves M, Kovaleski JE (1985) Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Med Sci Sports Exerc 17(4): 472–476

    Article  CAS  PubMed  Google Scholar 

  • Foley JM, Harkema SJ, Meyer RA (1991) Decreased ATP cost of isometric contractions in ATP-depleted rat fast-twitch muscle. Am J Physiol 261: C872–881

    Google Scholar 

  • Forslund AH, Hambraeus L, Olsson RM, El-Khoury AE, Yu YM, Young VR (1998) The 24-h whole body leucine and urea kinetics at normal and high protein intakes with exercise in healthy adults. Am J Physiol 275: E310–2

    Google Scholar 

  • Francescato M, Puntel I (2006) Does a preexercise carbohydrate feeding improve a 20-km cross-country ski performance? J Sports Med Phys Fitness 46: 248–256

    CAS  PubMed  Google Scholar 

  • Galler S, Hibler K, Gohlsch B, Pette D (1997) Two functionally distinct myosin heavy chain isoforms in slow skeletal muscle fibers. Fed Europ Biochem Soc Letters 410: 150–152

    Article  CAS  Google Scholar 

  • Geiger PC, Han DH, Wright DC, Holloszy JO (2006) How muscle insulin sensitivity is regulated: testing of a hypothesis. Am J Physiol Endocrinol Metab 291(6): E1258–1263

    Article  CAS  Google Scholar 

  • Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90(1): 367–417

    Article  CAS  PubMed  Google Scholar 

  • Goldspink G (1994) Zelluläre und molekulare Aspekte der Trainingsadaptation des Skelletmuskels. In: Komi PV (Hrsg) Kraft und Schnellkraft im Sport. Deutscher Ärzteverlag, Köln: S 213–231

    Google Scholar 

  • Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86(12): 5755–5761

    Article  CAS  PubMed  Google Scholar 

  • Green H, Goreham C, Ouyang J, Ball-Burnett M, Ranney D (1999) Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am J Physiol 276: R591–666

    Google Scholar 

  • Helge JW, Wu BJ, Willer M, Daugaard JR, Storlien LH, Kiens B (2001) Training affects muscle phospholipid fatty acid composition in humans. J Appl Physiol 90(2): 670–677

    Article  CAS  PubMed  Google Scholar 

  • Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ (1999) Effect of induced metabolic acidosis on human skeletal muscle metabolism during exercise. Am J Physiol 277: E647–658

    Google Scholar 

  • Hood DA, Parent G (1991) Metabolic and contractile responses of rat fast-twitch muscle to 10-Hz stimulation. Am J Physiol 260: C832–840

    Google Scholar 

  • Hoppeler H (1986) Exercise-induced ultrastructural changes in skeletal muscle. Int J Sports Med 7(4): 187–204

    Article  CAS  PubMed  Google Scholar 

  • Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 403(4): 369–376

    Article  CAS  PubMed  Google Scholar 

  • Howald H, Boesch C, Kreis R, Matter S, Billeter R, Essen-Gustavsson B, Hoppeler H (2002) Content of intramyocellular lipids derived by electron microscopy, biochemical assays, and (1)H-MR spectroscopy. J Appl Physiol 92(6): 2264–2272

    Article  CAS  PubMed  Google Scholar 

  • Hurley BF, Nemeth PM, Martin WH, Hagberg JM, Dalsky GP, Holloszy JO (1986) Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 60(2): 562–567

    CAS  PubMed  Google Scholar 

  • Hwang JH, Pan JW, Heydari S, Hetherington HP, Stein DT (2001) Regional differences in intramyocellular lipids in humans observed by in vivo 1 H-MR spectroscopic imaging. J Appl Physiol 90(4): 1267–1274

    CAS  PubMed  Google Scholar 

  • Ivy JL,Ferguson-Stegall LM (2013) Nutrient Timing. The means to improved exercise performance, recovery, and training adaptation. American Journal of Lifestyle Medicine 8: 246–259

    Article  Google Scholar 

  • Ivy JL, Costill DL, Fink WJ, Lower RW (1979) Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports Exerc 11(1): 1–6

    Google Scholar 

  • Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF (1988) Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64(4): 1480–1485

    CAS  PubMed  Google Scholar 

  • Jackman MR, Willis WT (1996) Characteristics of mitochondria isolated from type I and type IIb skeletal muscle. Am J Physiol 270: C673–678

    Google Scholar 

  • Jensen TE, Lai YC (2009) Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance. Arch Physiol Biochem 115(1): 13–21

    Article  CAS  PubMed  Google Scholar 

  • Jensen J, Richter EA (2012) Regulation of glucose and glycogen metabolism during and after exercise J Physiol 590(5): 1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Jentjens R, Jeukendrup A (2003) Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med 33(2): 117–44

    Article  PubMed  Google Scholar 

  • Jentjens RL, Achten J, Jeukendrup AE (2004) High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc 36(9): 1551–1558

    Article  CAS  PubMed  Google Scholar 

  • Jeukendrup AE (2004) Carbohydrate intake during exercise and performance. Nutrition 20(7–8): 669–677

    Article  CAS  PubMed  Google Scholar 

  • Jeukendrup AE (2010) Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care 13(4): 452–457

    Article  CAS  PubMed  Google Scholar 

  • Jeukendrup AE, Saris WH, Wagenmakers AJ (1998) Fat metabolism during exercise: a review–part II: regulation of metabolism and the effects of training. Int J Sports Med 19(5): 293–302

    Article  CAS  PubMed  Google Scholar 

  • Jeukendrup AE, Moseley L, Mainwaring GI, Samuels S, Perry S, Mann CH (2006) Exogenous carbohydrate oxidation during ultraendurance exercise 100(4): 1134–141

    CAS  Google Scholar 

  • Kalliokoski KK, Knuuti J, Nuutila P (2005) Relationship between muscle blood flow and oxygen uptake during exercise in endurance-trained and untrained men. J Appl Physiol 98(1): 380–383

    Article  PubMed  Google Scholar 

  • Karamanolis I, Tokmakidis S (2008) Effects of carbohydrate ingestion 15 min before exercise on endurance running capacity. Appl Physiol Nutr Metab 33: 441–449

    Article  PubMed  CAS  Google Scholar 

  • Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zierath JR, Blomstrand E (2004) Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab 287(1): E1–7

    Article  Google Scholar 

  • Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol (Lond) 469: 459–478

    Article  CAS  Google Scholar 

  • Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86(1): 205–243

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Jefferson LS (2004) Amino acids as regulators of gene expression. Nutr Metab 171(1): 3

    Article  CAS  Google Scholar 

  • Kraus WE, Torgan CE, Taylor DA (1994) Skeletal muscle adaptation to chronic low-frequency motor nerve stimulation. Exerc Sport Sci Rev 22: 313–360

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Atherton PJ, Selby A, Rankin D, Williams J, Smith K, Hiscock N, Rennie MJ (2012) Muscle protein synthetic responses to exercise: effects of age, volume, and intensity. J Gerontol A Biol Sci Med Sci 67(11): 1170–1177

    Article  PubMed  CAS  Google Scholar 

  • Kushmerick MJ, Meyer RA, Brown TR (1992) Regulation of oxygen consumption in fast- and slow-twitch muscle. Am J Physiol 263: C598–606

    Google Scholar 

  • Leijssen DP, Saris WH, Jeukendrup AE, Wagenmakers AJ (1995) Oxidation of exogenous [13C]galactose and [13C]glucose during exercise. J Appl Physiol 79(3): 720–725

    CAS  PubMed  Google Scholar 

  • Lowey S, Waller GS, Trybus KM (1993) Function of skeletal muscle myosin heavy and light chain isoforms by an in vitro motility assay. J Biol Chem 268(27): 20414–20418

    CAS  PubMed  Google Scholar 

  • Lucidi P, Rossetti P, Porcellati F, Pampanelli S, Candeloro P, Andreoli AM, Perriello G, Bolli GB, Fanelli CG (2010) Mechanisms of insulin resistance after insulin-induced hypoglycemia in humans: the role of lipolysis. Diabetes 59(6): 1349–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin WH, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO (1993) Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 265: E708–714

    Google Scholar 

  • McComas AJ (1994) Human neuromuscular adaptations that accompany changes in activity. Med Sci Sports Exerc 26(12): 1498–509

    Article  CAS  PubMed  Google Scholar 

  • McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA (2000) Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab 278(4): E580–587

    Google Scholar 

  • Meyer RA, Brown TR, Krilowicz BL, Kushmerick MJ (1986) Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Am J Physiol 250: C264–274

    Google Scholar 

  • Millward DJ, Davies CTM, Halliday D, Wolman SL, Matthews D, Rennie M (1982) Effects of exercise on protein metabolism in humans as explored with stable isotopes. Federation Proc 41: 2686–2691

    CAS  Google Scholar 

  • Millard-Stafford M, Rosskopf LB, Snow TK, Hinson BT (1997) Water versus carbohydrate-electrolyte ingestion before and during a 15-km run in the heat. Int J Sport Nutr 7(1): 26–38

    Article  CAS  PubMed  Google Scholar 

  • Morales-Lopez JL, Aguera E, Miro F, Galisteo AM (1990) Effects of training on fiber composition in rat gastrocnemius muscle. Biol Struct Morphog 3(2): 53–56

    PubMed  Google Scholar 

  • Nieman DC, Johanssen LM, Lee JW, Arabatzis K (1990) Infectious episodes in runners before and after the Los Angeles Marathon. J Sports Med Phys Fitness 30(3): 316–328

    CAS  PubMed  Google Scholar 

  • Perez M, Lucia A, Rivero L, Serrano L, Calbet L, Delgado A, Chicharro L (2002) Effects of transcutaneous short-term electrical stimulation on M. vastus lateralis characteristics of healthy young men. Pflugers Arch 443(5): 866–874

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR (2000) An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 88(2): 386–392

    CAS  PubMed  Google Scholar 

  • Rennie MJ, Bohé J, Smith K, Wackerhage H, Greenhaff P (2006) Branched-chain amino acids as fuels and anabolic signals in human muscle. J Nutr 36(1 Suppl): 264S–268S

    Google Scholar 

  • Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM (1996) Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol 81(5): 2182–2191

    CAS  PubMed  Google Scholar 

  • Richardson RS (1998) Oxygen transport: air to muscle cell. Med Sci Sports Exerc 30(1): 53–59

    Article  CAS  PubMed  Google Scholar 

  • Richter EA, Derave W, Wojtaszewski JF (2001) Glucose, exercise and insulin: emerging concepts. J Physiol 535: 313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert, E Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265: E380–391

    Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR (2000) Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol 88(5): 1707–1714

    CAS  PubMed  Google Scholar 

  • Sahlin K (1986) Muscle fatigue and lactic acid accumulation. Acta Physiol Scand Suppl 556: 83–91

    CAS  PubMed  Google Scholar 

  • Sahlin K (1991) Control of energetic processes in contracting human skeletal muscle. Biochem Soc Trans 19(2): 353–358

    Article  CAS  PubMed  Google Scholar 

  • Saltin B, Radegran G, Koskolou MD, Roach RC (1998) Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand 162(3): 421–36

    Article  CAS  PubMed  Google Scholar 

  • Schrauwen P, van Aggel-Leijssen DP, Hul G, Wagenmakers AJ, Vidal H, Saris WH, van Baak MA (2002) The effect of a 3-month low-intensity endurance training program on fat oxidation and acetyl-CoA carboxylase-2 expression. Diabetes 51(7): 2220–2226

    Article  CAS  PubMed  Google Scholar 

  • Severinghaus JW (2000) Oxygen transport in blood and to mitochondria. In: Saltin B, Boushel R, Secher N, Mitchel J (eds) Exercise and circulation in health and disease. … pp 169–174

    Google Scholar 

  • Smekal G, von Duvillard SP, Pokan R, Tschan H, Baron R, Hofmann P, Wonisch M, Bachl N (2003) Effect of endurance training on muscle fat metabolism during prolonged exercise: agreements and disagreements. Nutrition 19(10): 891–900

    Article  CAS  PubMed  Google Scholar 

  • Sherman WM (1992) Recovery from endurance exercise. Med Sci Sports Exerc 24 (9 Suppl) S336–9

    Google Scholar 

  • Sherman WM, Brodowicz G, Wright DA, Allen WK, Simonsen J, Dernbach A (1989) Effects of 4 h preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc 21(5): 598–604

    Article  CAS  PubMed  Google Scholar 

  • Sherman W, Peden M, Wright D (1991) Carbohydrate feedings 1 h before exercise improves cycling performance. Am J Clin Nutr 54: 866–870

    CAS  PubMed  Google Scholar 

  • Sial S, Coggan AR, Hickner RC, Klein S (1998) Training-induced alterations in fat and carbohydrate metabolism during exercise in elderly subjects. Am J Physiol 274: E785–790

    Google Scholar 

  • Starritt EC, Howlett RA, Heigenhauser GJ, Spriet LL (2000) Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. Am J Physiol Endocrinol Metab 278(3): E462–468

    Google Scholar 

  • Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL (2006) An acute increase in skeletal muscle carnitine content alters fuel metabolism in resting human skeletal muscle. J Clin Endocrinol Metab 91(12): 5013–5018

    Article  CAS  PubMed  Google Scholar 

  • Suter E, Hoppeler H, Claassen H, Billeter R, Aebi U, Horber F, Jaeger P, Marti B (1995) Ultrastructural modification of human skeletal muscle tissue with 6-month moderate-intensity exercise training. Int J Sports Med 16(3): 160–166

    Article  CAS  PubMed  Google Scholar 

  • Sweeney HL, Kushmerick MJ, Mabuchi K, Sreter FA, Gergely J (1988) Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers. J Biol Chem 263(18): 9034–9039

    CAS  PubMed  Google Scholar 

  • Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ (2007) Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 292(3): R1271–1278

    Article  CAS  Google Scholar 

  • Tate CA, Taffet GE (1989) The regulatory role of calcium in striated muscle. Med Sci Sports Exerc 21(4): 393–398

    Article  CAS  PubMed  Google Scholar 

  • Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR (2001) Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 281(2): E197–206

    Google Scholar 

  • Turcotte LP, Richter EA, Kiens B (1992) Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J. Physiol 262: E791–799

    Google Scholar 

  • Turcotte LP (1999) Role of fats in exercise. Types and quality. Clin Sports Med 18(3): 485–498

    Article  CAS  PubMed  Google Scholar 

  • Vandenbogaerde TJ, Hopkins WG (2011) Effects of Acute Carbohydrate Supplementation on Endurance Performance – A Meta-Analysis. Sports Med 41(9): 773–792

    Article  PubMed  Google Scholar 

  • van Loon LJ (2004) Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J Appl Physiol 97(4): 1170–1187

    Article  PubMed  Google Scholar 

  • van Loon LJ, Jeukendrup AE, Saris WH, Wagenmakers AJ (1999) Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol 87(4): 1413–1420

    PubMed  Google Scholar 

  • van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ (2000) Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 72(1): 106–111

    PubMed  Google Scholar 

  • van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536: 295–304

    Article  PubMed  PubMed Central  Google Scholar 

  • van Loon LJ, Koopman R, Stegen JH, Wagenmakers AJ, Keizer HA, Saris WH (2003) Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state. J Physiol 553: 611–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT (2010) The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol 110(4): 665–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Vock R, Weibel ER, Hoppeler H, Ordway G, Weber JM, Taylor CR (1996) Design of the oxygen and substrate pathways. V. Structural basis of vascular substrate supply to muscle cells. J Exp Biol 199: 1675–1688

    CAS  PubMed  Google Scholar 

  • Wagenmakers AJ (1998) Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev 26: 287–314

    Article  CAS  PubMed  Google Scholar 

  • Wagenmakers AJM, Meckers EJ, Brouns F, Kuipers H, Soeters PB, van der Vusse GJ, Saris WH (1991) Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am J Physiol 260: E883–890

    Google Scholar 

  • Wagenmakers AJM, Brouns F, Saris, WHM., Halliday D (1993) Oxidation rates of orally ingested carbohydrates during prolonged exercise in men. J Appl Physiol 75(6): 274–280

    Google Scholar 

  • Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald IA, Greenhaff PL (2011) Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol 589: 963–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker J, Heigenhauser GF, Hultman E, Spriet LL (2000) Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J Appl Physiol (88): 2151–2158

    CAS  PubMed  Google Scholar 

  • Westerblad H, Lee JA, Lannergren J, Allen DG (1991) Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 261: C195–209

    Google Scholar 

  • Wibom R, Hultman E, Johansson M, Matherei K, Constantin-Teodosiu D, Schantz PG (1992) Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol 73(5): 2004–2010

    CAS  PubMed  Google Scholar 

  • Winder WW (1998) Malonyl-CoA-regulator of fatty acid oxidation in muscle during exercise. Exerc Sport Sci Rev 26: 117–132

    Article  CAS  PubMed  Google Scholar 

  • Wright DA, Sherman WM, Dernbach AR (1991) Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol 71(3): 1082–1088

    CAS  PubMed  Google Scholar 

  • Yoshida Y, Jain SS, McFarlan JT, Snook LA, Chabowski A, Bonen A (2013) Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis. J Physiol 591: 4415–4426

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Smekal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Austria

About this chapter

Cite this chapter

Smekal, G. (2017). Der muskuläre Energiestoffwechsel bei körperlicher Aktivität. In: Wonisch, M., Hofmann, P., Förster, H., Hörtnagl, H., Ledl-Kurkowski, E., Pokan, R. (eds) Kompendium der Sportmedizin. Springer, Vienna. https://doi.org/10.1007/978-3-211-99716-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99716-1_9

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99715-4

  • Online ISBN: 978-3-211-99716-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics