Skip to main content

Applications of GA and GP to Industrial Design Optimization and Inverse Problems

  • Chapter
Advances of Soft Computing in Engineering

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 512))

Abstract

In this chapter the use of Genetic Algorithms and Genetic Programming for various industrial problems is discussed. Particular attention is paid to the case of difficult design optimization problems in which either (or both) (i) response functions are computationally expensive as well as affected by numerical noise and (ii) design variables are defined on a set of discrete variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACI Committee 318 (1999). Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (ACI 318R-99). American Concrete Institute, Detroit.

    Google Scholar 

  • Aguilar G., Matamoros A.B., Parra-Montesinos G.J., Ramírez J.A. and Wight J.K. (2002). Experimental evaluation of design procedures for shear strength of deep reinforced concrete beams. ACI Structural Journal 99:539–548.

    Google Scholar 

  • Altair OptiStruct version 4.0 (2000). Altair Engineering Inc.

    Google Scholar 

  • Alvarez L.F., Hughes D.C. and Toropov, V.V. (2000). Optimization of the manufacturing process for Roman cement. In Sienz, J. (ed.), Engineering Design Optimization. Process and Product Improvement. Proceedings of 2nd ASMO UK / ISSMO Conference, 27–32.

    Google Scholar 

  • Ashour A.F. (2000). Shear capacity of reinforced concrete deep beams. Structural Engineering Journal ASCE 126:1045–1052.

    Article  Google Scholar 

  • Ashour A.F., Alvarez L.F. and Toropov V.V. (2003). Empirical modelling of shear strength of RC deep beams by genetic programming. Computers and Structures 81:331–338.

    Article  Google Scholar 

  • Audze P. and Eglais V. (1977). New approach for planing out of experiments. Problems of Dynamics and Strengths 35:104–107. Zinatne Publishing House, Riga

    Google Scholar 

  • Baruch M. (1982). 15 Optimal correction of mass and stiffness matrices using measured modes. AIAA J. 20:441.

    Article  Google Scholar 

  • Bates S.J., Sienz J. and Toropov V.V. (2004). Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm, Proceedings of. 45th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics & Materials Conf. Palm Springs, California, 19–22 April 2004.

    Google Scholar 

  • Booker A.J. (1998). Design and analysis of computer experiments. AIAA-98-4757. In Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA. Part 1:118–128. St. Louis.

    Google Scholar 

  • Box G.E.P. and Draper N.R. (1987). Empirical model-building and response surfaces. New York, John Wiley and Sons.

    MATH  Google Scholar 

  • British Standards Institution (1997). Structural use of concrete, BSI, BS8110: Part 1. Milton Keynes.

    Google Scholar 

  • CEB-FIP (1993). Model Code 1990 for concrete structures. Thomas Telford Services, Ltd.. London, Comité Euro-International du Béton, Laussane.

    Google Scholar 

  • Choi K.K., Youn B.D. and Yang R.-J. (2001). Moving Least Square Method for reliability-based design optimization. Proc. 4th World Cong. Structural & Multidisciplinary Optimization, Dalian, China

    Google Scholar 

  • CIRIA Guide 2 (1977). The Design of Deep Beams in Reinforced Concrete. Over Arup and Partners, and Construction Industry Research and Information Association, London, reprinted 1984.

    Google Scholar 

  • CSA Technical Committee on Reinforced Concrete Design, A23.3-94 (1994). Design of Concrete Structures. Canadian Standards Association, Ontario, Canada.

    Google Scholar 

  • Davis L. (1985). Applying adaptive algorithms to epistatic domains, Proc. Int. Joint conf. on Artificial Intelligence 162–164.

    Google Scholar 

  • De Paiva H. A. and Siess C. P. (1965). Strength and behaviour of deep beams in shear. Journal of the Structural Division, ASCE ST5:19–41.

    Google Scholar 

  • FIA (2002). Article 3: Bodywork and Dimensions: Subsection 3.4.2, 2002. Formula One Technical Regulations.

    Google Scholar 

  • Friedman J.H. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics 19:1.

    Article  MATH  MathSciNet  Google Scholar 

  • Goldberg D.E. (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • Goldberg, D.E. and Lingle, R. (1985). Alleles, loci, and the TSP, Proc. 1st Int. conf. on Genetic Algorithms, 154–159. Hillsdale, NJ.

    Google Scholar 

  • Cawley P. and Adams R.D. (1979). The location of defects in structures from measurements of natural frequencies. J. Strain Analysis 14:49-?.

    Article  Google Scholar 

  • Gray G. Li Y., Murray-Smith D. and Sharman K. (1996). Structural system identification using genetic programming and a block diagram oriented simulation tool. Electronics Letters 32:1422–1424–-.

    Article  Google Scholar 

  • Gray G., Murray-Smith D. Sharman K. and Li, Y. (1996). Nonlinear model structure identification using genetic programming. In Late-breaking papers of Genetic Programming’ 96, Stanford, CA.

    Google Scholar 

  • G űrdal Z. Haftka R.T. and Hajela, P. (1999). Design and optimization of laminated composite material. John Wiley & Sons.

    Google Scholar 

  • Haftka R.T. (1997). Optimization and experiments — a survey. In Tatsumi T., Watanabe E. and Kambe T., eds., Theoretical and Applied Mechanics 1996, Proceedings of XIX International Congress of Theoretical and Applied Mechanics, 303–321. Elsevier.

    Google Scholar 

  • Hajela P. and Soeiro F. J. (1990a). Structural damage detection based on static and modal analysis. AIAA J. 28:1110–-.

    Article  Google Scholar 

  • Hajela P. and Soeiro F.J. (1990b). Recent Developments in Damage Detection Based on System Identification Methods. Structural Optimization 2:1–-.

    Google Scholar 

  • Hassiotis S. and Jeong G.D. (1993). Assessment of structural damage from natural frequency measurements. J. Computers & Structures 49:679–-.

    Google Scholar 

  • Iman R.L. and Conover W.J. (1980). Small sample sensitivity analysis techniques for computer models, with an application to risk assessment, 17:1749–1842.

    MathSciNet  Google Scholar 

  • Jin R., Chen W. and Sudjianto A. (2003). An efficient algorithm for constructing optimal design of computer experiments. DETC-DAC48760, 2003 ASME Design Automation Conference, September 2-6, 2003. Chicago, IL.

    Google Scholar 

  • Johnson M., Moore L. and Ylvisaker D. (1990). Minimax and maximin distance designs. J. Statist. Plann. Inference 26:131–148.

    Article  MathSciNet  Google Scholar 

  • Kabe A.M. (1985). Stiffness matrix adjustment using mode data. AIAA J 23:1431.

    Article  Google Scholar 

  • Keane A. and Nair P. (2005). Computational Approaches for Aerospace Design: The Pursuit of Excellence. Wiley.

    Google Scholar 

  • Keijzer M. and Babovic V. (1999). Dimensionally aware genetic programming. Orlando. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M. and Smith, R.E, eds., GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, Florida, USA. Morgan Kauffman Publishers.

    Google Scholar 

  • Keijzer M. and Babovic V. (2000). Genetic programming within a framework of computeraided discovery of scientific knowledge. In: Whitley D., Goldberg D. Cantu-Paz E., Spector L., Parmee L. and Beyer H., eds., GECCO-2000: Proceedings of the Genetic and Evolutionary Computation Conference, Las Vegas, USA. Morgan Kauffman Publishers.

    Google Scholar 

  • Kinnear, K.E. (1994). Advances in genetic programming. MIT Press.

    Google Scholar 

  • Kong F.K., Robins P.J. and Cole D. F. (1970). Web reinforcement effects on deep beams. ACI Journal 67:1010–1017.

    Google Scholar 

  • Kong F. K., Robins P. J., Kirby D.P. and Short D.R. (1972). Deep beams with inclined web reinforcement. ACI Journal 69:172–176.

    Google Scholar 

  • Kong F. K. (1990). Reinforced concrete deep beams. Edited by F.K. Kong; Blackie. New York.

    Google Scholar 

  • Koza J.R. (1992). Genetic Programming: On the programming of computers by means of natural selection. MIT Press.

    Google Scholar 

  • Lapierre H. and Ostiguy G. (1990). Structural model verification with linear quadratic optimization theory. AIAA J. 28:1497–-.

    Article  Google Scholar 

  • Leonhardt F., and Walther R. (1970). Deep beams. Deutscher Ausschuss Für Stahlbeton Bulletin 178. Wilhelm Ernst and Sohn (Berlin), CIRIA English Translation.

    Google Scholar 

  • Mackay M.D., Beckman R.J. and Conover W.J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245.

    Article  MathSciNet  Google Scholar 

  • Madsen K. and Hegelund P. (1991). Non-gradient subroutines for non-linear optimization. Institute for Numerical Analysis, Technical University of Denmark, Report NI-91-05.

    Google Scholar 

  • Manuel R.F. Slight B.W. and Suter G. T. (1971). Deep beam behaviour affected by length and shear span variations. ACI Journal 68:954–958.

    Google Scholar 

  • Mau S.T. and Hsu T.T.C. (1987). Shear strength prediction for deep beams with web reinforcement. ACI Structural Journal 513–523.

    Google Scholar 

  • McKay B., Willis M.J., Hidden H.G., Montague G.A. and Barton G.W. (1996). Identification of industrial processes using genetic programming. In Friswell, M.I., and Mottershead, J.E., eds., Proceedings of International Conference on Identification in Engineering Systems, Swansea, 328–337. The Cromwell Press Ltd.

    Google Scholar 

  • Matheron G. (1963). Principles of geostatistics. Economic Geology 58:1246–1266.

    Article  Google Scholar 

  • Michalewicz Z. (1992). Genetic algorithms + data structures = evolution programs. Springer-Verlag

    Google Scholar 

  • Myers R.H. and Montgomery D.C. (1976). Response surface methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Nevey S. and Stephens M. (2000). Weight reduction in a Formula One composite wing. Altair Hyperworks: second UK conference. Towcester Racecourse, UK.

    Google Scholar 

  • Oliver I.M., Smith D.J. and Holland, J.R.C. (1987). A study of permutation crossover operators on the travelling salesman problem. Proc. 2nd Int. Conf. on Genetic Algorithms, 411–423, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Ramakrishnan V. and Ananthanarayana Y. (1968). Ultimate Strength of deep beams in shear. ACI Journal 65:87–98.

    Google Scholar 

  • Ravaii H., Toropov V.V. and Horoshenkov K.V. (1997). Structural damage recognition based on optimization techniques. In Gutkowski, W., Mroz, Z., eds., Proc. of 2nd World Congress of Structural and Multidisciplinary Optimization, Zakopane, Poland, May 1997, 1:299–304. Polish Academy of Sciences.

    Google Scholar 

  • Ravaii H., Toropov V.V. and Horoshenkov K.V. (1998a). Mixed numerical-experimental damage recognition in steel structures. In: Allison I.M. (ed.), Experimental Mechanics. Advances in Design, Testing and Analysis — Proc. 11th Int. Conf. on Experimental Mechanics, 1: 77–82,. Oxford, August 24-28, 1998. A.A. Balkema, Rotterdam.

    Google Scholar 

  • Ravaii H., Toropov V.V. and Mahfouz S.Y. (1998b). Application of a genetic algorithm and derivative-based techniques to identification of damage in steel structures. In: M. Tanaka, G.S. Dulikravich, (eds), Inverse Problems in Engineering Mechanics — Proc. Int. Symposium, 571–580, Nagano City, Japan, March 24-27, 1998. Elsevier.

    Chapter  Google Scholar 

  • Regan P.E. (1993). Research on shear: a benefit to humanity or a waste of time?. The Structural Engineer 71:337–346.

    Google Scholar 

  • Rogowsky D. M., MacGregor J.G., and Ong S. Y. (1986). Test of reinforced concrete deep beams. ACI Structural Journal 83:614–623.

    Google Scholar 

  • Roux W.J., Stander N. and Haftka R.T. (1998). Response surface approximations for structural optimization. International Journal for Numerical Methods in Engineering 42:517–534.

    Article  MATH  Google Scholar 

  • Sacks, J., Schiller, S.B. and Welch, W.J. (1989). Designs for computer experiments, Technometrics, 34:15–25.

    MathSciNet  Google Scholar 

  • Sahab M.G., Toropov V.V. and Ashour A.F. (2001). Cost optimization of reinforced concrete flat slab buildings by a genetic algorithm. 4th World Congress of Structural an Multidisciplinary Optimization. Dalian, China.

    Google Scholar 

  • Shewry M. and Wynn H. (1987). Maximum entropy design. J. Appl. Statist. 14:165–170.

    Article  Google Scholar 

  • Smith K. N. and Vantsiotis A. S. (1982). Shear strength of deep beams. ACI Structural Journal 79:201–213.

    Google Scholar 

  • Stephens M., Gambling M., Jones R.D., Toropov V.V. and Alvarez L.F. (2002). Weight optimization of a formula one car composite component. In: P.D. Gosling (ed.), Proc. of 4th ASMO UK / ISSMO Conf. on Engineering Design Optimization. Process and Product Improvement, July 4-5, 2002, 178–183. Newcastle.

    Google Scholar 

  • Subedi N. K., Vardy A.E. and Kubota N. (1986). Reinforced concrete deep beams-some test results. Magazine of Concrete Research 38:206–219.

    Article  Google Scholar 

  • Subedi N.K. (1988). Reinforced concrete deep beams: a method of analysis. Proceedings of Institution of Civil Engineering, Part 2, 85:1–30.

    Google Scholar 

  • Suter G. T. and Manuel, R. F. (1971). Diagonal crack width control in short beam. ACI Journal 68:451–455.

    Google Scholar 

  • Tan K.H., Weng L. W. and Teng, S. (1997). A strut-and-tie model for deep beams subjected to combined top-and-bottom loading. The Structural Engineer Journal (London), 75:215–225.

    Google Scholar 

  • Tan K. H. and Lu H. Y. (1999). Shear behaviour of large reinforced concrete deep beams and code comparisons. ACI Structural Journal 96:836–845.

    Google Scholar 

  • Teng S., Kong F. K. and Poh S. P. (1998). Shear strength of reinforced and pre-stressed concrete deep beams. Part I: Current design methods and a proposed equation. Proceedings Institution of Civil Engineers, Structures & Buildings 128:112–123.

    Google Scholar 

  • Toropov V.V. (2001). Modelling and approximation strategies in optimization — global and mid-range approximations, response surface methods, genetic programming, low / high fidelity models. In: Blachut J.; Eschenauer H. A. (eds), Emerging Methods for Multidisciplinary Optimization, CISM Courses and Lectures, No. 425, International Centre for Mechanical Sciences, 205–256. Springer.

    Google Scholar 

  • Toropov V. V. and Alvarez L.F. (1998a). Application of genetic programming and response surface methodology to optimization and inverse problems. In: M. Tanaka, G.S. Dulikravich (eds), Inverse Problems in Engineering Mechanics — Proc. Int. Symp., 551–560, Nagano City, March 1998. Elsevier,.

    Google Scholar 

  • Toropov V. V. and Alvarez L.F. (1998b). Approximation model building for design optimization using genetic programming methodology. Paper AIAA-98-4769, 7th AIAA/USAF/NASA/ISSMO Symp. on Multidisciplinary Analysis and Optimization, 490–498, St. Louis, USA, September 1998.

    Google Scholar 

  • Toropov V. V., Alvarez L.F. and Ravaii, H. (1999a). Structural damage recognition using optimization techniques and genetic programming methodology, 3rd ISSMO/UBCAD/UB/AIAA World Congress of Structural and Multidisciplinary Optimization,(CD Proc.), Buffalo, NY, USA, May 17–21, 1999.

    Google Scholar 

  • Toropov V. V., Alvarez L.F. and Ravaii H. (1999b). Recognition of damage in steel structures using genetic programming methodology. In: M.I. Friswell, J.E. Mottershead, A.W. Lees (eds.), Proc. 2nd International Conf. on Identification in Engineering Systems, 382–391.Swansea, March 29-31, 1999. The Cromwell Press Ltd.

    Google Scholar 

  • Toropov V.V., Bates S.J. and Querin O.M. (2007). Generation of extended uniform Latin hypercube designs of experiments. 9th Int. Conference on the Application of Artificial Intelligence to Civil, Structural and Environmental Engineering. St. Julians, Malta, 18–21 September 2007.

    Google Scholar 

  • Toropov V.V. and Markine V.L. (1996). The use of simplified numerical models as midrange approximations. 6th AIAA/NASA/ISSMO Symp. on Multidisciplinary Analysis and Optimization, Part 2, 952–958. Bellevue, WA.

    Google Scholar 

  • Toropov V.V., Markine V.L., and Holden C.M.E. (1999). Use of mid-range approximations for optimization problems with functions of domain-dependent calculability, Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, NY.

    Google Scholar 

  • Toropov V.V., Schramm U., Sahai, A., Jones R. and Zeguer, T. (2005). Design optimization and stochastic analysis based on the Moving Least Squares Method. In: Herskovits J, Mazorche S. and A. Canelas (eds) 6th World Congress of Structural and Multidisciplinary Optimization. Paper 9412. CD-ROM Proceedings. Rio de Janeiro, Brazil, May 2005.

    Google Scholar 

  • Toropov V.V. and Yoshida F. (2005). Application of advanced optimization techniques to parameter and damage identification problems. In: Mroz, Z. and Stavroulakis, G.E. (eds.), Parameter Identification of Materials and Structures, CISM Courses and Lectures Vol. 469:177–263, International Centre for Mechanical Sciences. Springer.

    Google Scholar 

  • Wang W., Jiang D.-H., and Hsu C.-T.T. (1993). Shear strength of reinforced concrete deep beams. Journal of Structural Engineering 119:2294–2312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Toropov, V.V., Alvarez, L.F., Querin, O.M. (2010). Applications of GA and GP to Industrial Design Optimization and Inverse Problems. In: Waszczyszyn, Z. (eds) Advances of Soft Computing in Engineering. CISM International Centre for Mechanical Sciences, vol 512. Springer, Vienna. https://doi.org/10.1007/978-3-211-99768-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99768-0_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99767-3

  • Online ISBN: 978-3-211-99768-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics