Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 2405 Accesses

Abstract

This chapter presents an overview of recent contributions that show how fluid mechanics is drastically changing cancer research. The review will mainly focus on the computational modelling of fluid-mediated processes related to cancer dynamics, spanning different representation scales from cells to organs. Fluid mechanics seems to act as a fundamental organizing principle in many aspects of cancer, including its growth, progression, metastasis, and therapy. On the other hand, it is clear that fluid-dynamics modelling can make a huge contribution to many areas of experimental cancer investigation since there is now a wealth of data that requires systematic analysis. The relevance of microfluidics in the isolation, detection, molecular characterization, and migration of tumour cells is also discussed. In the last part of the chapter, future challenges and perspectives are briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosi D, Mollica F (2002) On the mechanics of a growing tumour. Int J Eng Sci 40:1297–1316

    Article  Google Scholar 

  • Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 22:163–186

    Article  Google Scholar 

  • Anderson ARA, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127:905–915

    Article  Google Scholar 

  • De Angelis E, Preziosi L (2000) Advection diffusion models for solid tumours in vivo and related free-boundary problems. Math Models Methods Appl Sci 10:379–408

    Google Scholar 

  • Baish JW, Netti PA, Jain RK (1997) Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc Res 53:128–141

    Article  Google Scholar 

  • Baish JW, Stylianopoulos T, Lanning RM, Kamoun WS, Fukumura D, et al. (2011) Scaling rules for diffusive drug delivery in tumour and normal tissues. Proc Nat Acad Sci USA 108:1799–1803

    Google Scholar 

  • Bauer AL, Jackson TL, Jiang Y (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92:3105–3121

    Article  Google Scholar 

  • Bauer AL, Jackson TL, Jiang Y (2009) Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 5:e1000445

    Article  Google Scholar 

  • Baxter LT, Jain RK (1989) Transport of fluid and macromolecules in tumors: I. Role of interstitial pressure and convection. Microvasc Res 37:77–104

    Google Scholar 

  • Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18:593–646

    Article  Google Scholar 

  • Bergdorf M, Milde F, Koumoutsakos P (2010) Continuum models of mesenchymal cell migration and sprouting angiogenesis. In: Deisboeck T, Stamatakos GS (eds) Multiscale cancer modeling. CRC, Boca Raton, pp 213–235

    Google Scholar 

  • Boucher Y, Jain RK (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumours: Implications for vascular collapse. Cancer Res 52:5110–5114

    Google Scholar 

  • Bresch D, Colin T, Grenier E, Ribba B, Saut O (2010) Computational modeling of solid tumor growth: the avascular stage. SIAM J Sci Comput 32:2321–2344

    Article  Google Scholar 

  • Cabrera H, Castro J, Grassi HC, Andrades EDJ, López-Rivera SA (2012) The effect of photodynamic therapy on contiguous untreated tumor. Dermatol Surg 38:1097–1099

    Article  Google Scholar 

  • Chao T-C, Ros A (2008) Microfluidic single-cell analysis of intracellular compounds. J Royal Soc Interface 5:S139–S150

    Article  Google Scholar 

  • Chaplain MAJ (1996) Avascular growth, angiogenesis, and vascular growth in solid tumors: the mathematical modelling of the stages of tumor development. Math Comput Model 23:47–87

    Article  Google Scholar 

  • Chaplain MA (2000) Mathematical modelling of angiogenesis. J Neuro-Oncol 50:37–51

    Article  Google Scholar 

  • Chaplain MAJ, Graziano L, Preziosi L (2003) Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. IMA J Math Appl Med Biol 23:197–229

    Article  Google Scholar 

  • Chaplain MAJ, Lachowicz M, Szymańska Z, Wrzosek D (2011) Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion. Math Models Methods Appl Sci 21:719–743

    Article  Google Scholar 

  • Chaw KC, Manimaran M, Tay FE, Swaminathan S (2007) Matrigel coated polydimethylsiloxane based microfluidic devices for studying matastatic and non-metastatic cancer cell invasion and migration. Biomed Microdevices 9:597–602

    Article  Google Scholar 

  • Cheng SY, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab on a Chip 7:720–725

    Article  Google Scholar 

  • Cristini V, Lowengrub JS, Nie Q (2003) Nonlinear simulation of tumor growth. J Math Biol 46:191–224

    Article  Google Scholar 

  • Cullen JP, Sayeed S, Sawai RS, Theodorakis NG, Cahill PA, et al. (2002) Pulsatile flow-induced angiogenesis. Arterioscler, Thromb Vasc Biol 22:1610–1616

    Google Scholar 

  • Dallon JC, Othmer HG (2004) How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J Theor Biol 231:203–222

    Article  Google Scholar 

  • Davies JA (2005) Mechanisms of morphogenesis. Elsevier, Philadelphia

    Google Scholar 

  • Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Birkhäuser, Boston

    Google Scholar 

  • Dillon R, Painter KJ, Owen MR (2008) A single-cell based model of cellular growth using the immersed boundary method. In: Koo CB, Li Z, Li P (eds) Moving interface problems and applications in fluid dynamics (Contemporary Mathematics, AMS) pp 1–16

    Google Scholar 

  • Djonov V, Baum O, Burri P (2003) Vascular remodeling by intussusceptive angiogenesis. Cell and Tissue Res 314:107–117

    Article  Google Scholar 

  • Dupin MM, Halliday I, Care CM, Munn LL (2008) Lattice Boltzmann modelling of blood cell dynamics. Int J Comput Fluid Dyn 22:481–492

    Article  Google Scholar 

  • Dvorak HF, Nagy J, Dvorak J, Dvorak A (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109

    Google Scholar 

  • Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    Article  Google Scholar 

  • Erbertseder K, Reichold J, Flemisch B, Jenny P, Helmig R (2012) A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS One 7:e31966

    Article  Google Scholar 

  • Fedosov DA, Fornleitner J, Gompper G (2012) Margination of white blood cells in microcapillary flow. Phys Rev Lett 108:028104

    Article  Google Scholar 

  • Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    Article  Google Scholar 

  • Friedman A, Hu B (2007) Bifurcation for a free boundary problem modeling tumor growth by Stokes equation. SIAM J Math Anal 39:174–194

    Article  Google Scholar 

  • Fu Y, Kunz R, Wu J, Dong C (2012) Study of local hydrodynamic environment in cell-substrate adhesion using side-view \(\mu \)PIV technology. PLoS One 7:e30721

    Article  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  Google Scholar 

  • Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47:2128–2154

    Article  Google Scholar 

  • Goel S, Duda D, Xu L, Munn L, Boucher Y, et al. (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Google Scholar 

  • Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, et al. (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Nat Acad Sci USA 109:7630–7635

    Google Scholar 

  • Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016

    Article  Google Scholar 

  • Graziano L, Preziosi L (2007) Mechanics in tumour growth. In: Mollica F, Rajagopal KR, Preziosi L (eds) Modeling of biological materials. Birkhäuser, Boston, pp 267–328

    Google Scholar 

  • Gusenbauer M, Cimrak I, Bance S, Exl L, Reichel F, Oezelt H, Schrefl T (2011) A tunable cancer cell filter using magnetic beads: cellular and fluid dynamic simulations. arXiv:1110.0995v1 [physics.flu-dyn]

    Google Scholar 

  • Halpern D, Secomb TW (1989) The squeezing of red blood cells through capillaries with near-minimal diameters. J Fluid Mech 203:381–400

    Article  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–670

    Article  Google Scholar 

  • Hartwell HL, Hopfield JJ, Leibner S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  Google Scholar 

  • Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  Google Scholar 

  • Holmes MJ, Sleeman BD (2000) A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J Theor Biol 202:95–112

    Article  Google Scholar 

  • Hou HW, Lee WC, Leong MC, Sonam S, Vedula SRK, Lim CT (2011) Microfluidics for applications in cell mechanics and mechanobiology. Cell Mol Bioeng 4:591–602

    Article  Google Scholar 

  • Huang Y, Agrawal B, Sun D, Kuo JS, Williams JC (2011) Microfluidics-based devices: new tools for studying cancer and cancer stem cell migration. Biomicrofluidics 5:013412

    Article  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  Google Scholar 

  • Koumoutsakos P, Pivkin I, Milde F (2013) The fluid mechanics of cancer and its therapy. Ann Rev Fluid Mech 45:325–355

    Article  Google Scholar 

  • Lautenschläger F, Paschke S, Schinkinger S, Bruel A, Bell M, Guck J (2009) The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc Nat Acad Sci USA 106:15696–15701

    Article  Google Scholar 

  • Lee I, Boucher Y, Demhartner TJ, Jain RK (1994) Changes in tumour blood flow, oxygenation and interstitial pressure induced by pentoxifylline. Br J Cancer 69:492–496

    Article  Google Scholar 

  • Leung D, Cachianes G, Kuang W, Goeddel D, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  Google Scholar 

  • Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised starling principle. Cardiovasc Res 87:198–210

    Article  Google Scholar 

  • Liang S, Slattery MJ, Wagner D, Simon SI, Dong C (2008) Hydrodynamic shear rate regulates melanoma-leukocyte aggregation, melanoma adhesion to the endothelium, and subsequent extravasation. Ann Rev Biomed Eng 36:661–671

    Google Scholar 

  • Liang S, Hoskins M, Dong C (2010) Tumor cell extravasation mediated by leukocyte adhesion in shear rate dependent on IL-8 signaling. Mol Cell Biomech 7:77–91

    Google Scholar 

  • Lianidou ES, Markou A (2011) Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clin Chem 57:1242–1255

    Article  Google Scholar 

  • Lim CT (2012) Microfluidics for cancer cell detection and diagnosis. IEEE Life Sci Newsl (June 2012)

    Google Scholar 

  • Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    Article  Google Scholar 

  • Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys 220:139–154

    Article  Google Scholar 

  • Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, et al. (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23:R1–R91

    Google Scholar 

  • Macklin P, McDougall S, Anderson ARA, Chaplain MAJ, Cristini V, Lowengrub J (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58:765–798

    Article  Google Scholar 

  • Mantzaris NV, Webb S, Othmer HG (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49:111–187

    Article  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ, Sherratt JA (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64:673–702

    Article  Google Scholar 

  • Michor F, Liphardt J, Ferrari M, Widom J (2011) What does physics have to do with cancer? Nat Rev Cancer 11:657–670

    Article  Google Scholar 

  • Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95:3146–3160

    Article  Google Scholar 

  • Moreira J, Deutsch A (2005) Pigment pattern formation in zebrafish during late larval stages: a model based on local interaction. Dev Dyn 232:33–42

    Article  Google Scholar 

  • Narang AS, Varia S (2011) Role of tumor vascular architecture in drug delivery. Adv Drug Delivery Rev 63:640–658

    Article  Google Scholar 

  • Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability: an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  Google Scholar 

  • Newman TJ (2005) Modeling multicellular systems using subcellular elements. Math Biosci Eng 2:613–624

    Article  Google Scholar 

  • Noguchi H, Gompper G (2005) Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc Nat Acad Sci US 102:14159–14164

    Article  Google Scholar 

  • Palsson E (2008) A 3-D model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems. J Theor Biol 254:1–13

    Article  Google Scholar 

  • Pappu V, Doddi SK, Bagchi P (2008) A computational study of leukocyte adhesion and its effect on flow pattern in microvessels. J Theor Biol 254:483–498

    Article  Google Scholar 

  • Perumpanani AJ, Byrne HM (1999) Extracellular matrix concentration exerts selection pressure on invasive cells. Euro J Cancer 35:1274–1280

    Article  Google Scholar 

  • Pham K, Frieboes HB, Cristini V, Lowengrub J (2011) Predictions of tumour morphological stability and evaluation against experimental observations. J Royal Soc Interface 8:16–29

    Article  Google Scholar 

  • Plank MJ, Sleeman BD, Jones PF (2004) A mathematical model of tumor angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J Theor Biol 229:435–454

    Article  Google Scholar 

  • Pozrikidis C (2005) Numerical simulation of cell motion in tube flow. Ann Biomed Eng 33:165–178

    Article  Google Scholar 

  • Praprotnik M, Delle Site L (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Ann Rev Phys Chem 59:545–571

    Article  Google Scholar 

  • Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502

    Article  Google Scholar 

  • Quaranta V, Weaver AM, Cummings PT, Anderson ARA (2005) Mathematical modeling of cancer: the future of prognosis and treatment. Clin Chim Acta 357:173–179

    Article  Google Scholar 

  • Qutub A, Mac Gabhann F (2009) Multiscale models of angiogenesis. IEEE Eng Med Biol Mag 28:14–31

    Article  Google Scholar 

  • Rejniak KA (2007) An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol 247:186–204

    Article  Google Scholar 

  • Roose T, Netti PA, Munn LL, Boucher Y, Jain RK (2003) Solid stress generated by spheroid growth estimated using a linear poroelasticity model. Microvasc Res 66:204–342

    Article  Google Scholar 

  • Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular tumor growth. SIAM Rev 49:179–208

    Article  Google Scholar 

  • Schaller G, Meyer-Hermann M (2005) Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model. Phys Rev E 71:051910

    Article  Google Scholar 

  • Schmid-Schönbein GW, Sung K-P, Tözeren H, Skalak R, Chien S (1981) Passive mechanical properties of human leukocytes. Biophys J 36:243–256

    Article  Google Scholar 

  • Sherratt JA, Chaplain MAJ (2001) A new mathematical model for avascular tumour growth. J Math Biol 43:291–312

    Article  Google Scholar 

  • Skotheim JM, Secomb TW (2007) Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys Rev Lett 98:078301

    Article  Google Scholar 

  • Soltani M, Chen P (2011) Numerical modeling of fluid flow in solid tumours. PLoS One 6:e20344

    Article  Google Scholar 

  • Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Nat Acad Sci USA 108:15342–15347

    Article  Google Scholar 

  • Sporn MB (1996) The war on cancer. Lancet 347:1377–1381

    Article  Google Scholar 

  • Stephanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis. Math Comput Model 44:96–123

    Article  Google Scholar 

  • Styp-Rekowska B, Hlushchuk R, Pries AR, Djonov V (2011) Intussusceptive angiogenesis: pillars against the blood flow. Acta Physiol 202:213–223

    Article  Google Scholar 

  • Sugihara-Seki M, Fu BM (2005) Blood flow and permeability in microvessels. Fluid Dyn Res 37:82–132

    Article  Google Scholar 

  • Sugihara-Seki M, Akinaga T, Itano T (2008) Flow across microvessel walls through the endothelial surface glycocalyx and the interendothelial cleft. J Fluid Mech 601:229–252

    Article  Google Scholar 

  • Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438

    Article  Google Scholar 

  • Swanson KR, Alvord EC Jr (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86:14–18

    Article  Google Scholar 

  • Tan SJ, Yobas L, Lee GYH, Ong CN, Lim CT (2009) Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices 11:883–892

    Article  Google Scholar 

  • Thompson KE, Byrne WF (1999) Modelling the internalization of labelled cells in tumour spheroids. Bull Math Biol 61:601–623

    Article  Google Scholar 

  • Travasso RDM, Corvera Poiré E (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS One 6:e19989

    Article  Google Scholar 

  • Turner S, Sherratt JA (2002) Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J Theor Biol 216:85–100

    Article  Google Scholar 

  • Venkatasubramanian R, Henson MA, Forbes NS (2008) Integrating cell cycle progression, drug penetration and energy metabolism to identify improved cancer therapeutic strategies. J Theor Biol 253:98–117

    Article  Google Scholar 

  • Vickerman V, Blundo J, Chung S, Kamm R (2008) Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab on a Chip 8:1468–1477

    Article  Google Scholar 

  • Weinberg RA (2007) The biology of cancer. Garland Science, New York

    Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Wirzt D, Konstantopoulos K, Searson PC (2011) The physics of cancer. The role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512–522

    Article  Google Scholar 

  • Wu JS, Aidun CK (2010) Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Inter J Numer Methods Fluids 62:765–783

    Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem 37:550–575

    Article  Google Scholar 

  • Yamane T, Mitsumata M, Yamaguchi N, Nakazawa T, Mochisuki K, et al. (2010) Laminar high shear stress up-regulates type IV collagen synthesis and down-regulates MMP-2 secretion in endothelium: A quantitative analysis. Cell and Tissue Res 340:471–479

    Google Scholar 

  • Yu M, Scott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382

    Google Scholar 

  • Zhang W, Kai K, Choi DS, Iwamoto T, Nguyen YH, et al. (2012) Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells. Proc Nat Acad Sci USA 109:18707–18712

    Google Scholar 

  • Zheng X, Wise SM, Cristini V (2005) Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull Math Biol 67:211–259

    Article  Google Scholar 

Download references

Acknowledgments

D. C. Belisario acknowledges the organizers of the I Workshop of the Venezuelan Society of Fluid Mechanics for inviting me to write part of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimas C. Belisario .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Belisario, D.C., Sigalotti, L.D.G. (2014). The Impact of Computational Fluid Mechanics on Cancer Research. In: Sigalotti, L., Klapp, J., Sira, E. (eds) Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-00191-3_6

Download citation

Publish with us

Policies and ethics