Skip to main content

Hardmetals WC–Co Based on Nanocrystalline Powders of Tungsten Carbide WC

  • Chapter
  • First Online:
Tungsten Carbides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 184))

  • 2865 Accesses

Abstract

The effect of sintering temperature and particle size of WC carbide powders on phase composition, density, some mechanical properties, and microstructure of WC–Co hardmetals is discussed in this chapter. Sequence of phase transformations during sintering of hardmetals is considered in detail. The use of nanocrystalline WC powders is shown to reduce the optimal sintering temperature of the WC–Co hardmetals by about 100 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arato P, Bartha L, Porat R, Berger S, Rosen A. Solid or liquid phase sintering of nanocrystalline WC/Co hardmetals. Nanostruct. Mater. 1998;10(2):245–255.

    Google Scholar 

  2. Sommer M, Schubert W-D, Zobetz E, Warbichler P. On the formation of very large WC crystal during sintering of ultrafine WC-Co alloys. Int. J. Refract. Hard. Mater. 2002;20(1):41–50.

    Google Scholar 

  3. Shao GQ, Duan XL, Xie JR, Yu XH, Zhang WF, Yuan RZ. Sintering of nanocrystalline WC-Co composite powder. Rev. Adv. Mater. Sci. 2003;5(4):281–286.

    Google Scholar 

  4. Gusev AI, Rempel AA. Nanocrystalline materials. Cambridge: Cambridge International Science Publications; 2004. p. 351.

    Google Scholar 

  5. Westbrook JH, Stover R. Carbides for high-temperature materials. In: High-temperature materials and technology. Campbell IE, Sherwood EM, editors. New York: Wiley; 1967. pp. 312–348.

    Google Scholar 

  6. Upadhyaya GS. Nature and properties of refractory carbides. New York: Nova Science Publ; 1996.

    Google Scholar 

  7. Gusev AI. Nonstoichiometry, disorder, short-range and long-range order in solids. Moscow: Nauka-Fizmatlit; 2007. p. 856. (in Russian).

    Google Scholar 

  8. Rautala P, Norton JT. Tungsten-cobalt-carbon system. Transact. AIME. 1952;194(4):1045–1050.

    Google Scholar 

  9. Gurland J. A study of the effect of carbon content on the structure and properties of sintered WC-Co alloys. Transact. AIME. 1954;200(3):285–290.

    Google Scholar 

  10. Pollock CB, Stadelmaier HH. The eta carbides in the Fe-W-C and Co-W-C systems. Metallurg. Transact. 1970;1(4):767–770.

    Google Scholar 

  11. Ettmayer P, Suchentrunk R. Über die thermische stabilität der eta-carbide. Monatsch. Chemie. 1970;101(4):1098-1103.

    Google Scholar 

  12. Johansson T, Uhrenius B. Phase equilibria, isothermal reactions, and a thermodynamic study in the Co-W-C system at \(1150^\circ \) C. Metal Sci. 1978;12(1):83–94.

    Google Scholar 

  13. Adelsköld V, Sundelin A, Westgren A. Carbide in kohlenstoffhaltigen Legierungen von Wolfram und Molybdän mit Chrom, Mangan, Eisen, Kobalt und Nickel. Zeitsch. Anorg. Allgem. Chemie. 1933;212(4):401–9.

    Google Scholar 

  14. Guillermet AF. Thermodynamic properties of the Co-W-C system. Metallurg. Transact. AIME A. 1989; 20A(5):935–956.

    Google Scholar 

  15. Villars P, Prince A, Okamoto H, Handbook of ternary alloy phase diagrams. Metals park. Ohio: ASM Publication; 1995. Vol. 5. pp. 6585–6605.

    Google Scholar 

  16. Kurlov AS, Gusev AI, Tungsten carbides and W-C phase diagram. Neorgan. Mater. 2006;42(2):156–163. (Engl. Transl. Inorganic Materials. 2006;42(2):121–27). (in Russian).

    Google Scholar 

  17. Kurlov AS, Gusev AI. Phase equilibria in the W-C system and tungsten carbides. Uspekhi Khimii. 2006;75(7):687–708. (Engl. Transl.: Russian Chem. Rev. 2006;75(7):617–636). (in Russian).

    Google Scholar 

  18. Kurlov AS, Gusev AI. Neutron and x-ray diffraction study and symmetry analysis of phase transformations in lower tungsten carbide \(W_{2}C\). Phys. Rev. B. 2007;76(17):174115-01–174115-16. (Paper 174115).

    Google Scholar 

  19. C-W (carbon-tungsten). In: Binary alloy phase diagrams. Massalski TB, Subramanian PR, Okamoto H, Kasprzak L, editors. \(2{nd}\) edition. Metals park. Ohio: ASM International Publication;1990. Vol. 1. pp. 895–896.

    Google Scholar 

  20. Kurlov AS, Rempel AA, Effect of sintering temperature on the phase composition and microhardness of WC-8 wt. % Co cemented carbide. Neorgan. Mater. 2007;43(6):685–691. (Engl. Transl. Inorg. Mater. 2007;43(6):602–607). (in Russian).

    Google Scholar 

  21. Kurlov AS, Rempel AA. Effect of WC nanoparticle size on the sintering temperature, density, and microhardness of WC-8 wt. % Co alloys. Neorgan. Mat. 2009;45(4):428–433. (Engl. Transl. Inorg. Mater. 2009;45(4):380–385). (in Russian).

    Google Scholar 

  22. Kurlov AA, Gusev AI, Rempel AA. Vacuum sintering of WC-8 wt. % Co hardmetals from WC powders with different dispersity. Int. J. Refr. Met. Hard Mater. 2011;29(2):221–231.

    Google Scholar 

  23. Kurlov AS, Rempel AA, Blagoveshenskii Yu V, Samokhin AV, Tsvetkov Yu V, Hard alloys WC-Co (6 wt. %) and WC-Co (10 wt. %) based on nanocrystalline powders. Doklady Akad. Nauk. 2011;439(2):215–220. (Engl. Transl. Doklady Chem. 2011;439(1):213–218). (in Russian).

    Google Scholar 

  24. Kurlov AS, Gusev AI, Effect of ball milling parameters on the particle size in nanocrystalline powders. Pis’ma v ZhTF. 2007;33(19):46–54. (Engl. Transl. Tech. Phys. Lett. 2007;33(10):828–832). (in Russain).

    Google Scholar 

  25. Gusev AI, Kurlov AS. Production of nanocrystalline powders by high-energy ball milling: model and experiment. Nanotechnology. 2008;19(26):265302-01–265302-08. (Paper 265302).

    Google Scholar 

  26. Gusev AI, Kurlov AS, Mechanical milling process modelling and making WC nanocrystalline powder. Neorgan. Mat. 2009;45(1):38–45. (Engl. Transl. Inorg. Mater. 2009;45(1):35–42). (in Russian).

    Google Scholar 

  27. Kurlov AS, Gusev AI. Production of nanocrystalline powder of WC via ball-milling. In: 17 Plansee Seminar 2009: Proceedings internnational conference on high performance P/M materials. Sigl LS, ödhammer PR, Wildner H, editors. Reutte: Plansee Group, 2009;3. p. GT 24/1-GT24/11. (25–29, May, 2009).

    Google Scholar 

  28. Kurlov AA, Gusev AI. Mathematical modeling of high-energy ball milling of powders. In: Proceedings \(6{th}\) international conference on mathematical modeling and computer simulation of material technologies (MMT-2010). Zinigrad M, ed. Ariel: Ariel University Center of Samaria; 2010. p. 1-105–1-113. (23–27, Aug, 2010).

    Google Scholar 

  29. Kurlov AS, Gusev AI, Model for milling of powders. Zh. Tekhn. Fiz. 2011;81(7):76–82. (Engl. Transl. Tech. Phys. 2011;56(7):975–980). (in Russian).

    Google Scholar 

  30. Krebs H. Grundzüge der Anorganischen Kristallchemie. Stuttgart: Ferdinand Enke Verlag; 1968.

    Google Scholar 

  31. Okamoto H. Co-WJ. Phase Equilib. 2002;23(2):193–194.

    Google Scholar 

  32. Nagender Naudi SV, Sriramamurty AM, Rama Rao P. Co-W (cobalt-tungsten). J. Alloy Phase Diagrams. 1986;2(1):43–52.

    Google Scholar 

  33. Markström A, Sundman B, Frisk K. A revised thermodynamic description of the Co-W-C system. J. Phase Equil. Diff. 2005;26(2):152–160.

    Google Scholar 

  34. Klyachko LI, Fal’kovskii VA, Khokhlov AM. Hard alloys based on tungsten carbide with fine structure. Moscow: Ruda i, Metally; 199948. pp. 48. (in Russian).

    Google Scholar 

  35. Gusev AI. Nanomaterials, nanostructures, and nanotechnologies. \(2{nd}\) edition. Moscow: Nauka-Fizmatlit; 2007. p. 416. (in Russian).

    Google Scholar 

  36. Fang ZZ, Xu W, Ryu T, Hwang KS, Sohn H.Y. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-a review. Int. J. Refr. Met. Hard Mater. 2009;27(2):288–299.

    Google Scholar 

  37. Blagoveshchenskiy YV, Samokhin AV, Tsvetkov YV, Alexeev NV, Isaeva NV, Kornev CA, Melnik YI. In: 17 Plansee seminar 2009: Proceedings international conference on high performance P/M materials. Sigl LS, Rödhammer P, Wildner H, editors. Reutte: Plansee Group; 2009. Vol. 3. p. GT 23/1-GT 23/6. (25–29, May, 2009).

    Google Scholar 

  38. Powder metallurgy and sprayed coatings. Mitin BS, ed. Moscow: Metallurgiya; 1987. pp. 184–186.

    Google Scholar 

  39. Schedler W. Hartmetall für den Praktiker: Aufbau, Herstellung, Eigenschaften und industrielle Anwendung einer modernen Werkstoffgruppe. Düsseldorf: VDI-Verlag; 1988. p. 558.

    Google Scholar 

  40. Kurlov AS, Rempel AA, Leenaers A, van den Berghe S. Bending strength and microhardness of WC-8 % (wt) Co hardmetals based on WC powders with various dispersity. Materialovedenie. 2009;4:18–21. (in Russian).

    Google Scholar 

  41. Kurlov AS, Leenaers A, van den Berghe S, Scibetta M, Schröttner H, Rempel AA. Microstructure of nanocrystalline WC powders and WC-Co hard alloys. Rev. Adv. Mater. Sci. 2011;27(2):165–172.

    Google Scholar 

  42. McCall JL, Steele H. Practical application of quantitative metallography. Philadelphia: ASTM International; 1984. p. 185.

    Google Scholar 

  43. Timoshenko S. Strength of Materials. Part 1: Elementary theory and problems. Second edition. Princeton: D. Van Nostrand Company; 1940. p. 359.

    Google Scholar 

  44. Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness. I. Direct crack measurements. J. Am. Ceram. Soc. 1981;64(9):533–538.

    Google Scholar 

  45. Kurlov AS, Gusev AI. Vacuum annealing of nanocrystalline WC powders. Neorgan. Mat. 2012;48(7):781–791. (Engl. Transl. Inorg. Mater. 2012;48(7):680–690). (in Russian).

    Google Scholar 

  46. Kurlov AS, Gusev AI. Pecualirities of vacuum annealing of nanocrystalline WC powders. Int. J. Refr. Met. Hard Mater. 2012;32(5):51–60.

    Google Scholar 

  47. Kurlov AS. Effect of vacuum annealing on the particle size and phase composition of nanocrystalline WC powders. Zh. Fiz. Khimii. 2013;87(42):664–671. (Engl. Transl. Russ. J. Phys. Chem. A. 2013;87(4):654–661). (in Russian).

    Google Scholar 

  48. Kurlov AS, Rempel AA, Matrenin VI, Stikhin AS. Morphology and crystal-chemical characteristics of cobalt and nickel nanopowders prepared by thermochemical and electrolytic methods. Neorgan. Mat. 2013;49(2):144–150. (Engl. Transl. Inorg. Mater. 2013;49(2):153–158). (in Russian).

    Google Scholar 

  49. Kurlov AS, Gusev AI, Rempel AA. Morphology of ultrafine cobalt and nickel powders. Rev. Advans. Mater. Sci. 2012;32(1):52–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S Kurlov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurlov, A.S., Gusev, A.I. (2013). Hardmetals WC–Co Based on Nanocrystalline Powders of Tungsten Carbide WC. In: Tungsten Carbides. Springer Series in Materials Science, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-00524-9_5

Download citation

Publish with us

Policies and ethics