Skip to main content

Boolean Model of the Cell Cycle Response to Stress

  • Chapter
  • First Online:
Mathematical Modelling of the Cell Cycle Stress Response

Part of the book series: Springer Theses ((Springer Theses))

  • 728 Accesses

Abstract

Understanding complex biological systems, e.g. the cell cycle, requires not only sophisticated experimental techniques but also adequate mathematical models. Many different mathematical approaches, from quantitive to qualitative, from continuous to discrete, have been applied to study the cell in different environmental conditions. In this chapter, we introduce a second complementary modelling approach to study the response of the cell cycle to osmotic and alpha-factor signal: we construct a Boolean network which describes the dynamical behaviour of the cell cycle response to multiple extracellular signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different.

References

  1. R. Albert, H.G. Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)

    Article  MathSciNet  Google Scholar 

  2. G. Charvin, C. Oikonomou, E.D. Siggia, F.R. Cross, Origin of irreversibility of cell cycle start in budding yeast. PLoS Biol. 8(1), e1000284 (2010)

    Google Scholar 

  3. K.C. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, B. Novak, J.J. Tyson, Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11(1), 369–391 (2000)

    Article  Google Scholar 

  4. K.C. Chen, L. Calzone, A. Csikasz-nagy, F.R. Cross, B. Novak, J.J. Tyson, Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15(August), 3841–3862 (2004)

    Article  Google Scholar 

  5. M. Davidich, S. Bornholdt, The transition from differential equations to Boolean networks: a case study in simplifying a regulatory network model. J. Theor. Biol. 255(3), 269–277 (2008)

    Article  Google Scholar 

  6. M.I. Davidich, S. Bornholdt, Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2), e1672 (2008)

    Google Scholar 

  7. S. Kauffman, Origins of Order: Self-organization and Selection in Evolution (Oxford University Press, Oxford, 1993). Technical monograph

    Google Scholar 

  8. E. Klipp, B. Nordlander, R. Kröger, P. Gennemark, S. Hohmann, Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23(8), 975–982 (2005)

    Article  Google Scholar 

  9. F. Li, T. Long, Y. Lu, Q. Ouyang, C. Tang, The yeast cell-cycle network is robustly designed. PNAS 101(14), 4781–4786 (2004)

    Article  ADS  Google Scholar 

  10. Y. Okabe, M. Sasai, Stable stochastic dynamics in yeast cell cycle. Biophys. J. 93(10), 3451–3459 (2007)

    Article  ADS  Google Scholar 

  11. E. Radmaneshfar, M. Thiel, Recovery from stress: a cell cycle perspective. J. Comp. Int. Sci. 3(1–2), 33–44 (2012)

    Google Scholar 

  12. E. Radmaneshfar, D. Kaloriti, M.C. Gustin, N.A.R Gow, A.J.P Brown, C. Grebogi, M.C. Romano, M. Thiel, From START to FINISH: the influence of osmotic stress on the cell cycle. PLoS ONE 8(7), e68067 (2013)

    Google Scholar 

  13. V. Reiser, K.E. D’Aquino, E. Ly-Sha, A. Amon, The stress-activated mitogen-activated protein kinase signaling cascade promotes exit from mitosis. Mol. Biol. Cell 17(7), 3136–3146 (2006)

    Article  Google Scholar 

  14. F. Robert, Discrete iterations: a metric study. Springer Series in Computational Mathematics (1986)

    Google Scholar 

  15. J. Saez-Rodriguez, L. Simeoni, J.A. Lindquist, R. Hemenway, U. Bommhardt, B. Arndt, U.-U. Haus, R. Weismantel, E.D. Gilles, S. Klamt, B. Schraven, A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol. 3(8), 1580–1590 (2007)

    Article  MathSciNet  Google Scholar 

  16. P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, B. Futcher, Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)

    Article  Google Scholar 

  17. M. Tyers, G. Tokiwa, B. Futcher, Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12(5), 1955–1968 (1993)

    Google Scholar 

  18. J.J. Tyson, B. Novak, Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210(2), 249–263 (2001)

    Article  Google Scholar 

  19. Y. Zhang, M. Qian, Q. Ouyang, M. Deng, F. Li, C. Tang, Stochastic model of yeast cell-cycle network. Phys. D: Nonlinear Phenom. 219(1), 35–39 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elahe Radmaneshfar .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Radmaneshfar, E. (2014). Boolean Model of the Cell Cycle Response to Stress. In: Mathematical Modelling of the Cell Cycle Stress Response. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00744-1_4

Download citation

Publish with us

Policies and ethics