Skip to main content

Lactic Acid Bacteria Vector Vaccines

  • Chapter
  • First Online:
Molecular Vaccines
  • 1813 Accesses

Abstract

Vaccines are currently being developed based on the new concept of designing antigens that can prompt the innate immune system to trigger adaptive immunity and to characterize the T cells that are needed for the desired response. To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance. This induction of mucosal immunity through vaccination is a rather difficult task. However, potent mucosal adjuvants, vectors, and other special delivery systems can be used. There is a great need to develop effective mucosal delivery systems that avoid degradation and promote uptake of the antigen in the gastrointestinal tract and stimulate adaptive immune responses, rather than the tolerogenic immune responses seen in studies done with feeding soluble antigens.

Lactic acid bacteria have Generally Recognized As Safe (GRAS) status and have been developed in the past decade as potent adjuvants for mucosal delivery of vaccine antigens. Both Lactococcus lactis and Lactobacillus spp. have been used. In this chapter I will review the development of a platform technology based in Lactobacillus plantarum to deliver prophylactic molecules orally and will provide an example for plague.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quenee, L.E., Schneewind, O.: Plague vaccines and the molecular basis of immunity against Yersinia pestis. Hum. Vaccin. 5, 817–823 (2009)

    PubMed  CAS  Google Scholar 

  2. Sun, W., Roland, K.L., Curtiss 3rd, R.: Developing live vaccines against plague. J. Infect. Dev. Ctries. 5, 614–627 (2011)

    Article  PubMed  CAS  Google Scholar 

  3. Crook, L.D., Tempest, B.: Plague. A clinical review of 27 cases. Arch. Intern. Med. 152, 1253–1256 (1992)

    Article  PubMed  CAS  Google Scholar 

  4. Craven, R.B., Maupin, G.O., Beard, M.L., Quan, T.J., Barnes, A.M.: Reported cases of human plague infections in the United States, 1970–1991. J. Med. Entomol. 30, 758–761 (1993)

    PubMed  CAS  Google Scholar 

  5. Butler, T.: The black death past and present. 1. Plague in the 1980s. Trans. R. Soc. Trop. Med. Hyg. 83, 458–460 (1989)

    Article  PubMed  CAS  Google Scholar 

  6. Perry, R.D., Fetherston, J.D.: Yersinia pestis–etiologic agent of plague. Clin. Microbiol. Rev. 10, 35–66 (1997)

    PubMed  CAS  Google Scholar 

  7. Parkhill, J., et al.: Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 (2001). doi:10.1038/35097083

    Article  PubMed  CAS  Google Scholar 

  8. Achtman, M., et al.: Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. U.S.A. 96, 14043–14048 (1999)

    Article  PubMed  CAS  Google Scholar 

  9. Cornelis, G.R.: Yersinia type III secretion: send in the effectors. J. Cell Biol. 158, 401–408 (2002). doi:10.1083/jcb.200205077

    Article  PubMed  CAS  Google Scholar 

  10. Fields, K.A., Straley, S.C.: LcrV of Yersinia pestis enters infected eukaryotic cells by a virulence plasmid-independent mechanism. Infect. Immun. 67, 4801–4813 (1999)

    PubMed  CAS  Google Scholar 

  11. Galvan, E.M., Lasaro, M.A., Schifferli, D.M.: Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect. Immun. 76, 1456–1464 (2008). doi:10.1128/IAI.01197-07

    Article  PubMed  CAS  Google Scholar 

  12. Miller, J., et al.: Macromolecular organisation of recombinant Yersinia pestis F1 antigen and the effect of structure on immunogenicity. FEMS Immunol. Med. Microbiol. 21, 213–221 (1998)

    Article  PubMed  CAS  Google Scholar 

  13. Li, B., Yang, R.: Interaction between Yersinia pestis and the host immune system. Infect. Immun. 76, 1804–1811 (2008). doi:10.1128/IAI.01517-07

    Article  PubMed  CAS  Google Scholar 

  14. Hamad, M.A., Nilles, M.L.: Roles of YopN, LcrG and LcrV in controlling Yops secretion by Yersinia pestis. Adv. Exp. Med. Biol. 603, 225–234 (2007). doi:10.1007/978-0-387-72124-8_20

    Article  PubMed  Google Scholar 

  15. Hueck, C.J.: Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998)

    PubMed  CAS  Google Scholar 

  16. Lathem, W.W., Crosby, S.D., Miller, V.L., Goldman, W.E.: Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc. Natl. Acad. Sci. U.S.A. 102, 17786–17791 (2005). doi:10.1073/pnas.0506840102

    Article  PubMed  CAS  Google Scholar 

  17. Butler, T.: Plague into the 21st century. Clin. Infect. Dis. 49, 736–742 (2009). doi:10.1086/604718

    Article  PubMed  Google Scholar 

  18. Butler, T.: Plague and Other Yersinia Infections. Plenum Press, New York (1983)

    Book  Google Scholar 

  19. Ben-Ari, T., et al.: Plague and climate: scales matter. PLoS Pathog. 7, e1002160 (2011). doi:10.1371/journal.ppat.1002160

    Article  PubMed  CAS  Google Scholar 

  20. Gage, K.L., et al.: Cases of cat-associated human plague in the Western US, 1977–1998. Clin Infect. Dis. 30, 893–900 (2000). doi:10.1086/313804

    Article  PubMed  CAS  Google Scholar 

  21. Jarrett, C.O., et al.: Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis. 190, 783–792 (2004). doi:10.1086/422695

    Article  PubMed  Google Scholar 

  22. Starnbach, M.N., Straley, S.C.: Yersinia: Strategies that Thwart Immune Defenses, pp. 71–92. Lippincott Williams and Wilkins, Philadelphia (2000)

    Google Scholar 

  23. Meyer, K.F.: Pneumonic plague. Bacteriol. Rev. 25, 249–261 (1961)

    PubMed  CAS  Google Scholar 

  24. World Health Organization: Human plague in 2002 and 2004. Wkly. Epidemiol. Rec. 79, 301–308 (2004)

    Google Scholar 

  25. Hull, H.F., Montes, J.M., Mann, J.M.: Septicemic plague in New Mexico. J. Infect. Dis. 155, 113–118 (1987)

    Article  PubMed  CAS  Google Scholar 

  26. Poland, J.D., Barnes, A.M.: Plague in CRC Handbook Series in Zoonoses. Section A. Bacterial, Rickettsial, Chlamydial and Mycotic Diseases, vol. I, pp. 515–559. CRC Press, Boca Raton (1979)

    Google Scholar 

  27. Gage, K.L., Lance, S.E., Dennis, D.T., Montenieri, J.A.: Human plague in the United States: a review of cases from 1988–1992 with comments on the likelihood of increased plague activity. Border Epidemiol. Bull. 19, 1–10 (1992)

    Google Scholar 

  28. Cavanaugh, D.C.: K F Meyer’s work on plague. J. Infect. Dis. 129(Suppl), S10–S12 (1974)

    Article  PubMed  Google Scholar 

  29. Meyer, K.F.: Modern therapy of plague. J. Am. Med. Assoc. 144, 982–985 (1950)

    Article  PubMed  CAS  Google Scholar 

  30. Boulanger, L.L., et al.: Gentamicin and tetracyclines for the treatment of human plague: review of 75 cases in new Mexico, 1985–1999. Clin. Infect. Dis. 38, 663–669 (2004). doi:10.1086/381545

    Article  PubMed  CAS  Google Scholar 

  31. Becker, T.M., et al.: Plague meningitis–a retrospective analysis of cases reported in the United States, 1970–1979. West. J. Med. 147, 554–557 (1987)

    PubMed  CAS  Google Scholar 

  32. Mwengee, W., et al.: Treatment of plague with gentamicin or doxycycline in a randomized clinical trial in Tanzania. Clin. Infect. Dis. 42, 614–621 (2006). doi:10.1086/500137

    Article  PubMed  CAS  Google Scholar 

  33. Kuberski, T., Robinson, L., Schurgin, A.: A case of plague successfully treated with ciprofloxacin and sympathetic blockade for treatment of gangrene. Clin. Infect. Dis. 36, 521–523 (2003). doi:10.1086/367570

    Article  PubMed  CAS  Google Scholar 

  34. Stenseth, N.C., et al.: Plague: past, present, and future. PLoS Med. 5, e3 (2008). doi:10.1371/journal.pmed.0050003

    Article  PubMed  Google Scholar 

  35. Kool, J.L.: Risk of person-to-person transmission of pneumonic plague. Clin. Infect. Dis. 40, 1166–1172 (2005). doi:10.1086/428617

    Article  PubMed  Google Scholar 

  36. Prentice, M.B., Rahalison, L.: Plague. Lancet 369, 1196–1207 (2007). doi:10.1016/S0140-6736(07)60566-2

    Article  PubMed  Google Scholar 

  37. Parent, M.A., et al.: Cell-mediated protection against pulmonary Yersinia pestis infection. Infect. Immun. 73, 7304–7310 (2005). doi:10.1128/IAI.73.11.7304-7310.2005

    Article  PubMed  CAS  Google Scholar 

  38. Bermudez-Humaran, L.G.: Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum. Vaccin. 5, 264–267 (2009)

    Article  PubMed  CAS  Google Scholar 

  39. Amdekar, S., Dwivedi, D., Roy, P., Kushwah, S., Singh, V.: Probiotics: multifarious oral vaccine against infectious traumas. FEMS Immunol. Med. Microbiol. 58, 299–306 (2010). doi:10.1111/j.1574-695X.2009.00630.x

    PubMed  CAS  Google Scholar 

  40. Wells, J.M., Mercenier, A.: Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 6, 349–362 (2008). doi:10.1038/nrmicro1840

    Article  PubMed  CAS  Google Scholar 

  41. Anderson, R., Dougan, G., Roberts, M.: Delivery of the Pertactin/P.69 polypeptide of Bordetella pertussis using an attenuated Salmonella typhimurium vaccine strain: expression levels and immune response. Vaccine 14, 1384–1390 (1996)

    Article  PubMed  CAS  Google Scholar 

  42. Ascon, M.A., Hone, D.M., Walters, N., Pascual, D.W.: Oral immunization with a Salmonella typhimurium vaccine vector expressing recombinant enterotoxigenic Escherichia coli K99 fimbriae elicits elevated antibody titers for protective immunity. Infect. Immun. 66, 5470–5476 (1998)

    PubMed  CAS  Google Scholar 

  43. Peters, C., Peng, X., Douven, D., Pan, Z.K., Paterson, Y.: The induction of HIV Gag-specific CD8+ T cells in the spleen and gut-associated lymphoid tissue by parenteral or mucosal immunization with recombinant Listeria monocytogenes HIV Gag. J. Immunol. 170, 5176–5187 (2003)

    PubMed  CAS  Google Scholar 

  44. Lee, J.S., et al.: Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J. Virol. 80, 4079–4087 (2006). doi:10.1128/JVI.80.8.4079-4087.2006

    Article  PubMed  CAS  Google Scholar 

  45. Wu, C.M., Chung, T.C.: Mice protected by oral immunization with Lactobacillus reuteri secreting fusion protein of Escherichia coli enterotoxin subunit protein. FEMS Immunol. Med. Microbiol. 50, 354–365 (2007). doi:10.1111/j.1574-695X.2007.00255.x

    Article  PubMed  CAS  Google Scholar 

  46. Kajikawa, A., Satoh, E., Leer, R.J., Yamamoto, S., Igimi, S.: Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis. Vaccine 25, 3599–3605 (2007). doi:10.1016/j.vaccine.2007.01.055

    Article  PubMed  CAS  Google Scholar 

  47. Daniel, C., et al.: Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Vaccine 27, 1141–1144 (2009). doi:10.1016/j.vaccine.2008.12.022

    Article  PubMed  CAS  Google Scholar 

  48. Bermudez-Humaran, L.G., Kharrat, P., Chatel, J.M., Langella, P.: Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Fact. 10(Suppl 1), S4 (2011). doi:10.1186/1475-2859-10-S1-S4

    Article  PubMed  Google Scholar 

  49. Badgett, M.R., Auer, A., Carmichael, L.E., Parrish, C.R., Bull, J.J.: Evolutionary dynamics of viral attenuation. J. Virol. 76, 10524–10529 (2002)

    Article  PubMed  CAS  Google Scholar 

  50. Lavelle, E.C., O’Hagan, D.T.: Delivery systems and adjuvants for oral vaccines. Expert Opin. Drug Deliv. 3, 747–762 (2006). doi:10.1517/17425247.3.6.747

    Article  PubMed  CAS  Google Scholar 

  51. Neutra, M.R., Kozlowski, P.A.: Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 6, 148–158 (2006). doi:10.1038/nri1777

    Article  PubMed  CAS  Google Scholar 

  52. Steinman, R.M.: The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991). doi:10.1146/annurev.iy.09.040191.001415

    Article  PubMed  CAS  Google Scholar 

  53. Banchereau, J., Steinman, R.M.: Dendritic cells and the control of immunity. Nature 392, 245–252 (1998). doi:10.1038/32588

    Article  PubMed  CAS  Google Scholar 

  54. Pulendran, B., Banchereau, J., Maraskovsky, E., Maliszewski, C.: Modulating the immune response with dendritic cells and their growth factors. Trends Immunol. 22, 41–47 (2001)

    Article  PubMed  CAS  Google Scholar 

  55. Fujkuyama, Y., et al.: Novel vaccine development strategies for inducing mucosal immunity. Expert Rev. Vaccines 11, 367–379 (2012). doi:10.1586/erv.11.196

    Article  PubMed  CAS  Google Scholar 

  56. Bedoui, S., et al.: Different bacterial pathogens, different strategies, yet the aim is the same: evasion of intestinal dendritic cell recognition. J. Immunol. 184, 2237–2242 (2010). doi:10.4049/jimmunol.0902871

    Article  PubMed  CAS  Google Scholar 

  57. Artis, D.: Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8, 411–420 (2008). doi:10.1038/nri2316

    Article  PubMed  CAS  Google Scholar 

  58. Rescigno, M., et al.: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001). doi:10.1038/86373

    Article  PubMed  CAS  Google Scholar 

  59. Grangette, C., et al.: Protection against tetanus toxin after intragastric administration of two recombinant lactic acid bacteria: impact of strain viability and in vivo persistence. Vaccine 20, 3304–3309 (2002)

    Article  PubMed  CAS  Google Scholar 

  60. Christensen, H.R., Frokiaer, H., Pestka, J.J.: Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 168, 171–178 (2002)

    PubMed  CAS  Google Scholar 

  61. Kalina, W.V., Mohamadzadeh, M.: Lactobacilli as natural enhancer of cellular immune response. Discov. Med. 5, 199–203 (2005)

    PubMed  Google Scholar 

  62. Mohamadzadeh, M., et al.: Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc. Natl. Acad. Sci. U.S.A. 102, 2880–2885 (2005). doi:10.1073/pnas.0500098102

    Article  PubMed  CAS  Google Scholar 

  63. Mohamadzadeh, M., Duong, T., Hoover, T., Klaenhammer, T.R.: Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria. Expert Rev. Vaccines 7, 163–174 (2008). doi:10.1586/14760584.7.2.163

    Article  PubMed  CAS  Google Scholar 

  64. Perdigon, G., Alvarez, S., Pesce de Ruiz Holgado, A.: Immunoadjuvant activity of oral Lactobacillus casei: influence of dose on the secretory immune response and protective capacity in intestinal infections. J. Dairy Res. 58, 485–496 (1991)

    Article  PubMed  CAS  Google Scholar 

  65. Pouwels, P.H., Leer, R.J., Boersma, W.J.: The potential of Lactobacillus as a carrier for oral immunization: development and preliminary characterization of vector systems for targeted delivery of antigens. J. Biotechnol. 44, 183–192 (1996). doi:10.1016/0168-1656(95)00140-9

    Article  PubMed  CAS  Google Scholar 

  66. Maassen, C.B., et al.: Instruments for oral disease-intervention strategies: recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine 17, 2117–2128 (1999)

    Article  PubMed  CAS  Google Scholar 

  67. Bermudez-Humaran, L.G., et al.: Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol. Lett. 224, 307–313 (2003)

    Article  PubMed  CAS  Google Scholar 

  68. Navarre, W.W., Schneewind, O.: Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63, 174–229 (1999)

    PubMed  CAS  Google Scholar 

  69. Weis, J.J., Ma, Y., Erdile, L.F.: Biological activities of native and recombinant Borrelia burgdorferi outer surface protein A: dependence on lipid modification. Infect. Immun. 62, 4632–4636 (1994)

    PubMed  CAS  Google Scholar 

  70. Sellati, T.J., et al.: Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytic cells via a CD14-dependent pathway distinct from that used by lipopolysaccharide. J. Immunol. 160, 5455–5464 (1998)

    PubMed  CAS  Google Scholar 

  71. del Rio, B., Seegers, J.F., Gomes-Solecki, M.: Immune response to Lactobacillus plantarum expressing Borrelia burgdorferi OspA is modulated by the lipid modification of the antigen. PLoS One 5, e11199 (2010). doi:10.1371/journal.pone.0011199

    Article  PubMed  Google Scholar 

  72. del Rio, B., et al.: Oral immunization with recombinant lactobacillus plantarum induces a protective immune response in mice with Lyme disease. Clin. Vaccine. Immunol. 15, 1429–1435 (2008). doi:10.1128/CVI.00169-08

    Article  PubMed  Google Scholar 

  73. Leary, S.E., et al.: Active immunization with recombinant V antigen from Yersinia pestis protects mice against plague. Infect. Immun. 63, 2854–2858 (1995)

    PubMed  CAS  Google Scholar 

  74. Alpar, H.O., Eyles, J.E., Williamson, E.D., Somavarapu, S.: Intranasal vaccination against plague, tetanus and diphtheria. Adv. Drug Deliv. Rev. 51, 173–201 (2001)

    Article  PubMed  CAS  Google Scholar 

  75. del Rio, B., et al.: Platform technology to deliver prophylactic molecules orally: an example using the Class A select agent Yersinia pestis. Vaccine 28, 6714–6722 (2010). doi:10.1016/j.vaccine.2010.07.084

    Article  PubMed  Google Scholar 

  76. Foligne, B., et al.: Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein. Gastroenterology 133, 862–874 (2007). doi:10.1053/j.gastro.2007.06.018

    Article  PubMed  CAS  Google Scholar 

  77. Ramirez, K., et al.: Neonatal mucosal immunization with a non-living, non-genetically modified Lactococcus lactis vaccine carrier induces systemic and local Th1-type immunity and protects against lethal bacterial infection. Mucosal Immunol. 3, 159–171 (2010). doi:10.1038/mi.2009.131

    Article  PubMed  CAS  Google Scholar 

  78. Welkos, S., et al.: Determination of the virulence of the pigmentation-deficient and pigmentation-/plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of pneumonic plague. Vaccine 20, 2206–2214 (2002)

    Article  PubMed  CAS  Google Scholar 

  79. Smiley, S.T.: Current challenges in the development of vaccines for pneumonic plague. Expert Rev. Vaccines 7, 209–221 (2008). doi:10.1586/14760584.7.2.209

    Article  PubMed  CAS  Google Scholar 

  80. Powell, B.S., et al.: Design and testing for a nontagged F1-V fusion protein as vaccine antigen against bubonic and pneumonic plague. Biotechnol. Prog. 21, 1490–1510 (2005). doi:10.1021/bp050098r

    Article  PubMed  CAS  Google Scholar 

  81. Alvarez, M.L., et al.: Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine 24, 2477–2490 (2006). doi:10.1016/j.vaccine.2005.12.057

    Article  PubMed  CAS  Google Scholar 

  82. Cornelius, C.A., et al.: Immunization with recombinant V10 protects cynomolgus macaques from lethal pneumonic plague. Infect. Immun. 76, 5588–5597 (2008). doi:10.1128/IAI.00699-08

    Article  PubMed  CAS  Google Scholar 

  83. Smiley, S.T.: Immune defense against pneumonic plague. Immunol. Rev. 225, 256–271 (2008). doi:10.1111/j.1600-065X.2008.00674.x

    Article  PubMed  CAS  Google Scholar 

  84. Williamson, E.D., et al.: Human immune response to a plague vaccine comprising recombinant F1 and V antigens. Infect. Immun. 73, 3598–3608 (2005). doi:10.1128/IAI.73.6.3598-3608.2005

    Article  PubMed  CAS  Google Scholar 

  85. Pavot, V., Rochereau, N., Genin, C., Verrier, B., Paul, S.: New insights in mucosal vaccine development. Vaccine 30, 142–154 (2012). doi:10.1016/j.vaccine.2011.11.003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gomes-Solecki DVM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gomes-Solecki, M. (2014). Lactic Acid Bacteria Vector Vaccines. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_22

Download citation

Publish with us

Policies and ethics