Skip to main content

System of Volterra Integral Equations: Existence Results via Brezis–Browder Arguments

  • Chapter
  • First Online:
Constant-Sign Solutions of Systems of Integral Equations

Abstract

In this chapter we shall consider the system of Volterra integral equations

$$\displaystyle\begin{array}{rcl} & & u_{i}(t) = h_{i}(t) +\int _{ 0}^{t}g_{ i}(t,s)f_{i}(s,u_{1}(s),u_{2}(s),\cdots \,,u_{n}(s))ds, \\ & & \qquad \qquad \qquad \qquad \qquad \qquad \qquad t \in [0,T],\ 1 \leq i \leq n {}\end{array}$$
(20.1.1)

where 0 < T < , and also the following system on a half-open interval

$$\displaystyle\begin{array}{rcl} & & u_{i}(t) = h_{i}(t) +\int _{ 0}^{t}g_{ i}(t,s)f_{i}(s,u_{1}(s),u_{2}(s),\cdots \,,u_{n}(s))ds, \\ & & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad t \in [0,T),\ 1 \leq i \leq n {}\end{array}$$
(20.1.2)

where 0 < T. Throughout, let \(u = (u_{1},u_{2},\cdots \,,u_{n}).\) We are interested in establishing the existence of solutions u of the systems (20.1.1) and (20.1.2), in \({(C[0,T])}^{n} = C[0,T] \times C[0,T] \times \cdots \times C[0,T]\) (n times), and (C[0,T))n, respectively. In addition, we shall tackle the existence of constant-sign solutions of (20.1.1) and (20.1.2). A solution u of (20.1.1) (or (20.1.2)) is said to be of constant sign if for each 1 ≤ in, we have \(\theta _{i}u_{i}(t) \geq 0\) for all t ∈ [0,T] (or t ∈ [0,T)), where \(\theta _{i} \in \{-1,1\}\) is fixed. Note that when θ i = 1 for all 1 ≤ in, a constant-sign solution reduces to a positive solution, which is the usual consideration in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Positive Solutions of Differential, Difference and Integral Equations (Kluwer, Dordrecht, 1999)

    Book  MATH  Google Scholar 

  2. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of a system of Fredholm integral equations. Acta Appl. Math. 80, 57–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Triple solutions of constant sign for a system of Fredholm integral equations. Cubo 6, 1–45 (2004)

    MathSciNet  MATH  Google Scholar 

  4. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of a system of integral equations: the semipositone and singular case. Asymptot. Anal. 43, 47–74 (2005)

    MathSciNet  MATH  Google Scholar 

  5. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of a system of integral equations with integrable singularities. J. Integr. Equat. Appl. 19, 117–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of a system of Volterra integral equations. Comput. Math. Appl. 54, 58–75 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Existence of solutions of systems of Volterra integral equations via Brezis–Browder arguments. Electron. J. Differ. Equat. 2011(104), 1–19 (2011)

    Article  MathSciNet  Google Scholar 

  8. H. Brezis, F.E. Browder, Existence theorems for nonlinear integral equations of Hammerstein type. Bull. Am. Math. Soc. 81, 73–78 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. P.J. Bushell, On a class of Volterra and Fredholm non-linear integral equations. Math. Proc. Camb. Philos. Soc. 79, 329–335 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. P.J. Bushell, W. Okrasiński, Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel. Math. Proc. Camb. Philos. Soc. 106, 547–552 (1989)

    Article  MATH  Google Scholar 

  11. P.J. Bushell, W. Okrasiński, Nonlinear Volterra integral equations with convolution kernel. J. Lond. Math. Soc. 41, 503–510 (1990)

    Article  MATH  Google Scholar 

  12. C. Corduneanu, Integral Equations and Applications (Cambridge University Press, New York, 1990)

    Google Scholar 

  13. G. Gripenberg, Unique solutions of some Volterra integral equations. Math. Scand. 48, 59–67 (1981)

    MathSciNet  MATH  Google Scholar 

  14. G. Gripenberg, S.-O. Londen, O. Staffans, Volterra Integral and Functional Equations. Encyclopedia of Mathematics and its Applications, vol. 34 (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  15. J. Lee, D. O’Regan, Existence principles for nonlinear integral equations on semi-infinite and half-open intervals, in Advances in Nonlinear Dynamics, ed. by S. Sivasundarem, A.A. Martynyuk (Gordon and Breach, Amsterdam, 1997), pp. 355–364

    Google Scholar 

  16. M. Meehan, D. O’Regan, Existence theory for nonlinear Volterra integrodifferential and integral equations. Nonlinear Anal. 31, 317–341 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Meehan, D. O’Regan, Existence theory for nonlinear Fredholm and Volterra integral equations on half-open intervals. Nonlinear Anal. 35, 355–387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Meehan, D. O’Regan, Positive solutions of Volterra integral equations using integral inequalities. J. Inequal. Appl. 7, 285–307 (2002)

    MathSciNet  MATH  Google Scholar 

  19. D. O’Regan, Positive solutions to singular boundary value problems with at most linear growth. Appl. Anal. 49, 171–196 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. D. O’Regan, Volterra and Urysohn integral equations in Banach spaces. J. Appl. Math. Stoch. Anal. 11, 449–464 (1998)

    Article  MATH  Google Scholar 

  21. D. O’Regan, M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential Equations (Kluwer, Dordrecht, 1998)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, R.P., O’Regan, D., Wong, P.J.Y. (2013). System of Volterra Integral Equations: Existence Results via Brezis–Browder Arguments. In: Constant-Sign Solutions of Systems of Integral Equations. Springer, Cham. https://doi.org/10.1007/978-3-319-01255-1_20

Download citation

Publish with us

Policies and ethics