Skip to main content

Sampling Emerging Social Behavior in Facebook Using Random Walk Models

  • Chapter
  • First Online:
Computational Models of Complex Systems

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 53))

Abstract

It has long been recognized that random walk models apply to a great diversity of situations such as: economics, mathematics and biophysics; current trends about Open Social Networks require new approaches for analyzing material publicly accessible. Thus, in this chapter we examine the potential of random walks to further our understanding about monitoring Social Behavior, taking Facebook as a case study. Although most of the work related to random walk models is traditionally used to generate animal movement paths, it is also possible to adapt classic diffusion models into exploratory algorithms with the aim to improve the ability to search under a complex environment. This algorithmic abstraction provides an analogy for a dissipative process within which trajectories are drawn through the virtual nodes of Facebook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kurtosis is the degree of peakedness of a distribution. Higher kurtosis means more of the variance is the result of infrequent extreme deviations.

  2. 2.

    An extensive search consist in long steps that improve the searching efficiency by using super-diffusive phases, e.g., ballistic motion and Lévy walks.

  3. 3.

    This list of keywords was mainly suggested by public preferences and current breaking news.

References

  1. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks. Physica A, (2011)

    Google Scholar 

  2. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in facebook: A case study of unbiased sampling of osns. In: INFOCOM, 2010 Proceedings IEEE, IEEE, pp. 1–9 (2010)

    Google Scholar 

  3. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., Da Luz, M.G.E., Raposo, E.P., Stanley, H.E.: Optimizing the success of random searches. Nature 401(6756), 911–914 (1999)

    Article  Google Scholar 

  4. Reynolds, A.M., Bartumeus, F.: Optimising the success of random destructive searches: Lévy walks can outperform ballistic motions. J. Theor. Biol. 260(1), 98–103 (2009)

    Google Scholar 

  5. Plank, M.J., Codling, E.A.: Sampling rate and misidentification of Lévy and non-Lévy movement paths. Ecology 90(12), 3546–3553 (2009)

    Article  Google Scholar 

  6. Viswanathan, G.M., da Luz, M.G.E., Raposo, E.P., Stanley, H.E.: The Physics of Foraging: An Introduction to Random Searches and Biological Encounters. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  7. Codling, E.A., Plank, M.J., Benhamou, S.: Random walk models in biology. J. R. Soc. Interface 5(25), 813 (2008)

    Article  Google Scholar 

  8. Bartumeus, F.: Lévy processes in animal movement: an evolutionary hypothesis. Fractals London 15(2), 151 (2007)

    Article  Google Scholar 

  9. Bartumeus, F., Catalan, J., Viswanathan, G.M., Raposo, E.P., da Luz, M.G.E.: The influence of turning angles on the success of non-oriented animal searches. J. Theor. Biol. 252(1), 43–55 (2008)

    Article  Google Scholar 

  10. Zollner, P.A., Lima, S.L.: Search strategies for landscape-level interpatch movements. Ecology 80(3), 1019–1030 (1999)

    Article  Google Scholar 

  11. Bartumeus, F., Da Luz, M.G.E., Viswanathan, G.M., Catalan, J.: Animal search strategies: a quantitative random-walk analysis. Ecology 86(11), 3078–3087 (2005)

    Article  Google Scholar 

  12. Anderson, D.R., Sweeney, D.J., Williams, T.A.: Introduction to Statistics: Concepts and Applications. West Publishing, St. Paul (1994)

    Google Scholar 

  13. Berg, H.C.: Random Walks in Biology. Princeton University Press, Princeton (1993)

    Google Scholar 

  14. Kent, J.T., Tyler, D.E.: Maximum likelihood estimation for the wrapped cauchy distribution. J. Appl. Stat. 15(2), 247–254 (1988)

    Article  Google Scholar 

  15. Bénichou, O., Coppey, M., Moreau, M., Moreau, M., Suet, P.H.: Optimal search strategies for hidden targets. Phys. Rev. Lett. 94(19), 198101 (2005)

    Article  Google Scholar 

  16. Bénichou, O., Coppey, M., Moreau, M., Suet, P.H., Voituriez, R.: A stochastic theory for the intermittent behaviour of foraging animals. Physica A 356(1), 151–156 (2005)

    Article  Google Scholar 

  17. Bénichou, O., Coppey, M., Moreau, M., Voituriez, R.: Intermittent search strategies: when losing time becomes efficient. EPL (Europhys. Lett.), 75 349 (2006)

    Google Scholar 

  18. Nurzaman, S.G., Matsumoto, Y., Nakamura, Y., Shirai, K., Koizumi, S., Ishiguro, H.: An adaptive switching behavior between levy and Brownian random search in a mobile robot based on biological fluctuation. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1927–1934, IEEE (1927)

    Google Scholar 

  19. Pina-Garcia, C., Gu, D., Hu, H.: A composite random walk for facing environmental uncertainty and reduced perceptual capabilities. In: Intelligent Robotics and Applications, pp. 620–629 (2011)

    Google Scholar 

  20. Velasco, R.: webpage on Federal Business Opportunities (FBO). https://www.fbo.gov/spg/DOJ/FBI/PPMS1/SocialMediaApplication/listing.html

  21. Keller, J.: How The CIA Uses Social Media to Track How People Feel. [Online] Available: http://www.theatlantic.com/technology/archive/2011/11/how-the-cia-uses-social-media-to-track-how-people-feel/247923/#.Trod98BsW3E.facebook

  22. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for social network analysis. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 31–36. ACM (2009)

    Google Scholar 

  23. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. Arxiv, preprint arXiv:1111.4503 (2011)

    Google Scholar 

  24. Gellman, R.: Perspectives on privacy and terrorism: all is not lost yet. Gov. Inf. Q. 19(3), 255–264 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers of this chapter for their useful comments. Mr. Piña-García has been supported by the Mexican National Council of Science and Technology (CONACYT), through the program “Becas para estudios de posgrado en el extranjero” (no. 213550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Piña-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Piña-García, C.A., Gu, D. (2014). Sampling Emerging Social Behavior in Facebook Using Random Walk Models. In: Mago, V., Dabbaghian, V. (eds) Computational Models of Complex Systems. Intelligent Systems Reference Library, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-01285-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01285-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01284-1

  • Online ISBN: 978-3-319-01285-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics